Wei Kuang

Address: 5747 South Ellis Avenue, Jones 211, Chicago, IL 60637 Email: weikuang@uchicago.edu | Website: https://weikuang97.github.io

Education

The University of Chicago

Ph.D. in Statistics, advised by Professor Mihai Anitescu

University of Science and Technology of China (USTC)

B.S. in Mathematics and Applied Mathematics Major: Probability and Statistics, GPA 3.96/4.30, Rank 1/46

Research Interests

Stochastic optimization, nonlinear optimization, randomized numerical linear algebra, online algorithms, uncertainty quantification, statistical inference in stochastic optimization methods

RESEARCH EXPERIENCE

Argonne National Laboratory

Mathematics and Computer Science Division

- Research Aide Technical PhD
- Givens Associate

PUBLICATIONS AND PREPRINTS

Online Covariance Matrix Estimation in Sketched Newton Methods
 Wei Kuang, Sen Na, and Mihai Anitescu
 Preprint, 2024 [Link]
 Preliminary results in NeurIPS Workshop OPT 2023: Optimization for Machine Learning, 2023 [Link]

• We develop a consistent estimator for the limiting covariance matrix based on sketched Newton methods. Our estimator is recursively updated, batch-free, and requiring no Hessian inverse. We theoretically provide an upper bound on its convergence rate. Combined with asymptotic normality results, we can perform real-time statistical inference on model parameters.

2. Sequential quadratic programming method for inequality constrained stochastic optimization using only equality constrained subproblems

Wei Kuang, Sen Na, and Mihai Anitescu

Working paper

• We aim to develop an online sequential quadratic programming method for stochastic optimization with both deterministic equality and inequality constraints. At each iteration, the method identifies an active set and then solves a subproblem involving only equality constraints, which significantly reduces the computational cost compared to methods that solve inequality constrained subproblems.

3. Compressed sensing for diffuse scattering

Wei Kuang, Vishwas Rao, Alexis Montoison, François Pacaud, and Mihai Anitescu Working paper

• We use compressed sensing to improve the resolution of a gigantic (size $500 \times 500 \times 500$) diffuse scattering data set. We apply a matrix-free interior point method to solve the compressed sensing problem, with Newton systems solved by preconditioned conjugate gradient (CG) method. We show that we can achieve "perfect" preconditioning on the neighborhood of the central path – the number of CG iterations is uniformly bounded on the central path and, as opposed to most experience with interior point – it does not degrade as the barrier parameter goes to infinity. We show a version of code that works on GPU.

HONORS AND AWARDS

1. Outstanding Graduate of Anhui Ordinary Institutions of Higher Learning	2019
• the highest honor awarded to distinguished graduates among undergraduate students in Anhui Province	
2. School Outstanding Graduate in University of Science and Technology of China	2019
3. 2018 ST. Yau College Mathematics Contests Individual Excellence Award in Probability and Statistics	2018
• recognized as one of the fifteen finalists among all undergraduate participants across China	
4. 2018 ST. Yau College Mathematics Contests Team Excellence Award	2018

Chicago, IL, USA September 2019 - June 2025 (expected)

> Hefei, Anhui, China September 2015 - July 2019

> > Lemont, IL, USA

Jun. - Sept. 2022, 2024 Jun. - Sept. 2023

5. Huang Yu Memorial Scholarship	2018
6. Gold Award of 2017 Outstanding Student Scholarship	2017
7. Gold Award of 2016 Outstanding Student Scholarship	2016
PRESENTATIONS	
1. CELS student poster session, Argonne National Laboratory	Lemont, Aug. 2024
2. Student Research Poster Day, Department of Statistics, UChicago	Chicago, Feb. 2024
3. NeuRIPS workshop OPT 2023: Optimization for Machine Learning	New Orleans, Dec. 2023
4. Summer Student Mini-Symposium, Argonne National Laboratory	Lemont, Aug. 2022-2024
PROFESSIONAL SERVICE	
Reviewer for	
• NeuRIPS workshop OPT 2024: Optimization for Machine Learning	2024
TEACHING EXPERIENCE	
Teaching Assistant, the University of Chicago	
• STAT 27410 Introduction to Bayesian Data Analysis	Winter 2024
• STAT 33100 Sample Surveys	Autumn 2023, Autumn 2024
• STAT 34300 Applied Linear Statistical Methods	Autumn 2022
• STAT 34800 Modern Methods in Applied Statistics	Spring 2023, Spring 2021
• STAT 22000 Statistical Methods and Applications	Spring 2022, Autumn 2020
• STAT 20000 Elementary Statistics	Autumn 2021, Spring 2020
• STAT 20010 Elementary Statistics Through Case Study	Winter 2020
SKILLS	
Programming Languages	
• Julia, Matlab, R, Python, Mathematica	
Languages	
• Native: Mandarin; Proficient: English	
References	

Provided upon request