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Abstract

Given the ubiquity of streaming data, online algorithms have been widely used for parameter estima-
tion, with second-order methods particularly standing out for their efficiency and robustness. In this
paper, we study an online sketched Newton method that leverages a randomized sketching technique
to perform an approximate Newton step in each iteration, thereby eliminating the computational bot-
tleneck of second-order methods. While existing studies have established the asymptotic normality of
sketched Newton methods, a consistent estimator of the limiting covariance matrix remains an open
problem. We propose a fully online covariance matrix estimator that is constructed entirely from the
Newton iterates and requires no matrix factorization. Compared to covariance estimators for first-
order online methods, our estimator for second-order methods is batch-free. We establish the consis-
tency and convergence rate of our estimator, and coupled with asymptotic normality results, we can
then perform online statistical inference for the model parameters based on sketched Newton meth-
ods. We also discuss the extension of our estimator to constrained problems, and demonstrate its su-
perior performance on regression problems as well as benchmark problems in the CUTEst set.

1 Introduction

We consider the following stochastic optimization problem:

min
x∈Rd

F (x) = EP [f(x; ξ)], (1)

where F : Rd → R is a stochastic, strongly convex objective function, f(·; ξ) is its noisy observation,
and ξ ∼ P is a random variable. Problems of form (1) appear in various decision-making applications
in statistics and data science, including online recommendation (Li et al., 2010), precision medicine
(Kosorok and Laber, 2019), energy control (Wallace and Ziemba, 2005), portfolio allocation (Fan et al.,
2012), and e-commerce (Chen et al., 2022). In these applications, (1) is often interpreted as a model
parameter estimation problem, where x denotes the model parameter and ξ denotes a random data
sample. The true model parameter x⋆ = argminx∈Rd F (x) is the minimizer of the expected population
loss F .

The classic offline approach to solving (1) is sample average approximation orM -estimation, which
generates t i.i.d. samples ξ1, . . . , ξt ∼ P and approximates the population loss F by the empirical loss:

x̂t = argmin
x∈Rd

{
F̂t(x) :=

1

t

t∑
i=1

f(x; ξi)

}
. (2)
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The statistical properties, e.g.,
√
t-consistency and asymptotic normality, of M -estimators x̂t are well-

known in the literature (Vaart, 1998; Hastie et al., 2009), and numerous deterministic optimization
methods can be applied to solve Problem (2), such as gradient descent and Newton’s method (Boyd
and Vandenberghe, 2004). However, deterministic methods are not appealing for large datasets due to
their significant computation and memory costs. In contrast, online methods via stochastic approxi-
mation have recently attracted much attention. These methods efficiently process each sample once
received and then discard, making them well-suited for modern streaming data. Thus, it is particularly
critical to quantify the uncertainty of online methods and leverage the methods to perform online
statistical inference for model parameters.

One of the most fundamental online methods is stochastic gradient descent (SGD) (Robbins
and Monro, 1951; Kiefer and Wolfowitz, 1952), which takes the form

xt+1 = xt − αt∇f(xt; ξt), t ≥ 1.

There exists a long sequence of literature that quantifies the uncertainty of SGD and its many variants.
Early works established almost sure convergence and asymptotic normality results of SGD in re-
stricted settings (Sacks, 1958; Fabian, 1968; Robbins and Siegmund, 1971; Fabian, 1973; Ljung, 1977;
Ermoliev, 1983; Lai, 2003). Later on, Ruppert (1988); Polyak and Juditsky (1992) proposed averaging
SGD iterates as x̄t =

∑t
i=1 xi/t and established generic asymptotic normality results for x̄t. This sem-

inal asymptotic study has then been generalized to other gradient-based methods, including implicit
SGD (Toulis et al., 2014; Toulis and Airoldi, 2017), constant-stepsize SGD (Li et al., 2018; Mou et al.,
2020), moment-adjusted SGD (Liang and Su, 2019), momentum-accelerated SGD (Tang et al., 2023),
and projected SGD (Duchi and Ruan, 2021; Davis et al., 2023). Additionally, studies under non-i.i.d.
settings have also been reported (Chen et al., 2020a; Liu et al., 2023b; Li et al., 2023).

With the asymptotic normality result for the averaged iterate x̄t (see (18) for the definition of Ω⋆):

√
t(x̄t − x⋆)

d−→ N (0,Ω⋆), (3)

estimating the limiting covariance matrix Ω⋆ is the crucial next step to perform online statistical infer-
ence. While some inferential procedures may bypass the need for this estimation, such as bootstrap-
ping (Fang et al., 2018; Liu et al., 2023a; Zhong et al., 2023; Lam and Wang, 2023) and random scaling
(Li et al., 2021; Lee et al., 2022), many works have focused on (3) and proposed different online covari-
ance matrix estimators for their simplicity and directness. In particular, Chen et al. (2020b) proposed
two estimators: a plug-in estimator and a batch-means estimator. Compared to the plug-in estimator,
which averages the estimated objective Hessians and then computes its inverse — resulting in signifi-
cant computational costs — the batch-means estimator is obtained simply through the SGD iterates.
Chen et al. (2020b) investigated the choice of batch sizes given a fixed total sample size, while Zhu
et al. (2021) refined that estimator by not requiring the total sample size being fixed in advance. The
two aforementioned works utilized increasing batch sizes, which has been relaxed to equal batch sizes
recently by Zhu and Dong (2021) and Singh et al. (2023). Combining the asymptotic normality with co-
variance estimation, we can then construct online confidence intervals for model parameters x⋆ based
on SGD iterates.

Along with SGD, stochastic Newton methods multiply the gradient direction by a Hessian inverse
to incorporate the objective’s curvature information, leading to improved and more robust perfor-
mance, particularly when dealing with Hessian matrices that have eigenvalues on significantly different
scales (Byrd et al., 2016; Kovalev et al., 2019; Bercu et al., 2020). The online updating scheme takes
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the form:
xt+1 = xt + αt∆xt with Bt∆xt = −∇f(xt; ξt), (4)

where Bt ≈ ∇2F (xt) is an estimate of the objective Hessian. A growing body of literature focuses on
performing (online) statistical inference based on (4). Leluc and Portier (2023) considered Bt as
a general preconditioning matrix and established the asymptotic normality for the last iterate xt

assuming the convergence of Bt. The authors showed that xt achieves asymptotic efficiency (i.e., min-
imal covariance) when Bt → ∇2F (x⋆), corresponding to online Newton methods. Bercu et al. (2020)
developed an online Newton method for logistic regression and established similar asymptotic normal-
ity for xt. Cénac et al. (2020) and Boyer and Godichon-Baggioni (2022) expanded that approach to
more general regression problems and investigated statistical inference on weighted Newton iterates
x̄t =

∑t
i=1 xi/t. The above studies revolved around regression problems where the estimated Hessian

Bt can be expressed as an average of rank-one matrices, allowing its inverse B−1
t to be updated online

by the Sherman-Morrison formula (Sherman and Morrison, 1950). However, computing the inverse of
a general estimated Hessian can be computationally demanding, with an O(d3) time complexity.

To address the above computational bottleneck, Na and Mahoney (2022) introduced an online
sketched Newton method that leverages a randomized sketching technique to approximately solve the
Newton system (4), without requiring the approximation error to vanish. Specifically, the time com-
plexity can be reduced to O(nnz(S)d), where S ∈ Rd×q is the sketching matrix with q ≪ d. For
instance, when S is a sparse sketching vector, the time complexity is O(d). Na and Mahoney (2022)
quantified the uncertainty of both sampling and sketching and established the asymptotic normality
for the last iterate xt of the sketched Newton method (see (19) for the definition of Ξ⋆):

1/
√
αt · (xt − x⋆)

d−→ N (0,Ξ⋆), (5)

where the limiting covariance Ξ⋆ ̸= Ω⋆ depends on the underlying sketching distribution in a complex
manner. Due to the challenges of estimating the sketching components in Ξ⋆, the authors proposed a
plug-in estimator for Ω⋆ instead. That estimator raises two major concerns. First, the plug-in estima-
tor is generally not asymptotically consistent, although the bias is controlled by the approximation er-
ror. It is only consistent when solving the Newton system exactly (so that the approximation error is
zero). The bias significantly compromises the performance of statistical inference. Second, the plug-in
estimator involves the inversion of the estimated Hessian, leading to an O(d3) time complexity that
contradicts the spirit of using sketching solvers.

Motivated by the limitations of plug-in estimators and the success of batch-means estimators in
first-order methods, we propose a novel weighted sample covariance estimator for Ξ⋆. Our estimator is
constructed entirely from the sketched Newton iterates with varying weights, and does not involve any
matrix inversion, making it computationally efficient. Additionally, our estimator has a simple re-
cursive form, aligning well with the online nature of the method. Unlike batch-means estimators in
first-order methods, our estimator is batch-free. We establish the consistency and convergence rate of
our estimator, and coupled with the asymptotic normality in (5), we can then construct asymptoti-
cally valid confidence intervals for the true model parameters x⋆ based on the Newton iterates {xt}.
The challenge in our analysis lies in quantifying multiple sources of randomness (sampling, sketching,
and adaptive stepsize introduced later); all of them affect the asymptotic behavior of online Newton
methods. We emphasize that our analysis naturally holds for degenerate designs where the Newton
systems are exactly solved and/or the stepsizes are deterministic. To our knowledge, the proposed es-
timator is the first online construction of a consistent limiting covariance matrix estimator for online
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second-order methods. We demonstrate its superior empirical performance through extensive experi-
ments on regression problems and benchmark problems from the CUTEst test set.

Structure of the paper: We introduce the online sketched Newton method in Section 2, and present
assumptions and some preliminary theoretical results in Section 3. In Section 4, we introduce the
weighted sample covariance matrix estimator and present its theoretical guarantees. The numerical
experiments are provided in Section 5, followed by conclusions and future work in Section 6.

Notation: Throughout the paper, we use ∥·∥ to denote the ℓ2 norm for vectors and the spectral norm
for matrices, ∥·∥F to denote the Frobenius norm for matrices, and Tr(·) to denote the trace of a matrix.
We use O(·) and o(·) to denote the big and small O notation in the usual sense. In particular, for two
positive sequences {at, bt}, at = O(bt) (also denoted as at ≲ bt) if at ≤ cbt for a positive constant c and
all large enough t. Analogously, at = o(bt) if at/bt → 0 as t → ∞. For a random variable sequence
{Xt}, Xt = Op(at) indicates that Xt/at is stochastically bounded. For two scalars a and b, a ∧ b =
min(a, b) and a∨ b = max(a, b). We let I denote the identity matrix, 0 denote zero vector or matrix,
and ei denote the vector with i-th entry being 1 and 0 otherwise; their dimensions are clear from the
context. For a sequence of compatible matrices {Ai},

∏j
k=iAk = AjAj−1 · · ·Ai if j ≥ i and I if j < i.

For a matrix A, λmin(A) (λmax(A)) represents the smallest (largest) eigenvalue of A. We also let Ft =
F (xt) and F ⋆ = F (x⋆) (similar for ∇Ft,∇2Ft, etc.), and let 1{·} denote the indicator function.

2 Online Sketched Newton Method

At a high level, the online sketched Newton method takes the following update scheme:

xt+1 = xt + ᾱt∆̄xt, (6)

where ∆̄xt approximately solves the Newton systemBt∆xt = −∇f(xt; ξt) via the sketching solver (see
(10)) and ᾱt is an adaptive, potentially random stepsize (see (11)).

More precisely, given the current iterate xt, we randomly generate a sample ξt ∼ P and obtain the
gradient and Hessian estimates:

ḡt = ∇f(xt; ξt) and H̄t = ∇2f(xt; ξt).

Then, we define Bt to be the Hessian average using samples {ξi}t−1
i=0, expressed as

Bt =
1

t

t−1∑
i=0

H̄i
online update

=⇒ Bt =
t− 1

t
Bt−1 +

1

t
H̄t−1. (7)

In this paper, we use (̄·) to denote a random quantity that depends on the current sample ξt. Note that
the estimate H̄t is only used in the (t+1)-th iteration; thus Bt is deterministic conditional on xt (this
is why we do not use the notation B̄t). The Hessian average is widely used in Newton methods to ac-
celerate the convergence rate (Na et al., 2022). In certain problems, Bt can be expressed as the sum of
rank-1 matrices, allowing its inverse to be updated online in a manner similar to (7) (Bercu et al., 2020;
Cénac et al., 2020; Boyer and Godichon-Baggioni, 2022; Leluc and Portier, 2023). However, solving
the Newton system Bt∆xt = −ḡt for a generic stochastic function can be expensive.

We now employ the sketching solver to approximately solve Bt∆xt = −ḡt. At each inner iteration
j, we generate a sketching matrix/vector St,j ∈ Rd×q ∼ S for some q ≥ 1 and solve the subproblem:

∆xt,j+1 = argmin
∆x

∥∆x−∆xt,j∥2, s.t. ST
t,jBt∆x = −ST

t,j ḡt. (8)
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In particular, we only aim to solve the sketched Newton system ST
t,jBt∆x = −ST

t,j ḡt at the j-th inner
iteration, but we prefer the solution that is as close as possible to the current solution approximation
∆xt,j . The closed-form recursion of (8) is (∆xt,0 = 0):

∆xt,j+1 = ∆xt,j −BtSt,j(S
T
t,jB

2
t St,j)

†ST
t,j(Bt∆xt,j + ḡt), (9)

where (·)† denotes the Moore-Penrose pseudoinverse. When we employ a sketching vector (q = 1), the
pseudoinverse reduces to the reciprocal, meaning that solving the Newton system is matrix-free—no
matrix factorization is needed. We refer to Strohmer and Vershynin (2008); Gower and Richtárik
(2015) for specific examples of choosing dense/sparse sketching matrices and their trade-offs.

For a deterministic integer τ , we let

∆̄xt = ∆xt,τ , (10)

and then we update the iterate xt as in (6) with a potentially random stepsize ᾱt satisfying

βt ≤ ᾱt ≤ βt + χt with βt =
cβ

(t+ 1)β
and χt =

cχ
(t+ 1)χ

. (11)

The motivation for using a well-controlled random stepsize is to enhance the adaptivity of the method
without compromising the asymptotic normality guarantee. Particularly, different directions may pre-
fer different stepsizes, so that ᾱt depends on ∆̄xt and is random. Berahas et al. (2021, 2023); Curtis
et al. (2024) have proposed various adaptive stepsize selection schemes for Newton methods on con-
strained problems that precisely satisfy the condition in (11).

3 Assumptions and Asymptotic Normality

In this section, we introduce assumptions and present the asymptotic normality guarantee for sketched
Newton methods. Throughout the paper, we let Ft = σ({ξi}ti=0), for any t ≥ 0, be the filtration of σ-
algebras generated by the sample sequence ξ0, ξ1, ξ2 . . ..

3.1 Assumptions

We first impose a Lipschitz continuity condition on the objective Hessian ∇2F (x), which is standard
in existing literature (Bercu et al., 2020; Cénac et al., 2020; Na and Mahoney, 2022).

Assumption 3.1. We assume F (x) is twice continuously differentiable and its Hessian∇2F (x) is ΥL-
Lipschitz continuous. In particular, for any x and x′, we have

∥∇2F (x)−∇2F (x′)∥ ≤ ΥL∥x− x′∥.

The next assumption regards the noise in stochastic gradients. We assume that the fourth condi-
tional moment of the gradient noise satisfies a growth condition. This assumption aligns with existing
literature on covariance estimation for SGD (Chen et al., 2020b; Zhu et al., 2021).

Assumption 3.2. We assume the function f(x; ξ) is twice continuously differentiable with respect to
x for any ξ, and ∥∇f(x; ξ)∥ is uniformly integrable for any x. This implies E[ḡt | Ft−1] = ∇Ft. Fur-
thermore, there exist constants Cg,1, Cg,2 > 0 such that

E[∥ḡt −∇Ft∥4 | Ft−1] ≤ Cg,1∥xt − x⋆∥4 + Cg,2, ∀t ≥ 0. (12)
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The above growth condition is weaker than the bounded moment condition E[∥ḡt−∇Ft∥4 | Ft−1] ≤
C assumed for the plug-in estimator in Na and Mahoney (2022). In fact, the bounded fourth moment
can be relaxed to a bounded (2+ϵ)-moment for establishing asymptotic normality of SGD and Newton
methods, but it is widely imposed for limiting covariance estimation.

The next assumption imposes lower and upper bounds for stochastic Hessians, with a growth con-
dition on the Hessian noise.

Assumption 3.3. There exist constants ΥH > γH > 0 such that for any ξ and any x,

γH ≤ λmin(∇2f(x; ξ)) ≤ λmax(∇2f(x; ξ)) ≤ ΥH , (13)

which implies E[H̄t | Ft−1] = ∇2Ft. Furthermore, there exist constants CH,1, CH,2 > 0 such that

E
[
∥H̄t −∇2Ft∥4 | Ft−1

]
≤ CH,1∥xt − x⋆∥4 + CH,2, ∀t ≥ 0. (14)

The condition (13) is widely used in the literature on stochastic second-order methods (Byrd et al.,
2016; Berahas et al., 2016; Moritz et al., 2016). By the averaging structure of Bt, we know (13) implies

γH ≤ λmin(Bt) ≤ λmax(Bt) ≤ ΥH . (15)

Moreover, as shown in (Chen et al., 2020b, Lemma 3.1), the condition (13) together with the bounded
E[∥∇f(x⋆; ξ)∥4] implies (12). The growth condition on the Hessian noise in (14) is analogous to that on
the gradient noise in (12).

We finally require the following assumption regarding the sketching distribution.

Assumption 3.4. For t ≥ 0, we assume the sketching matrix St,j
iid∼ S satisfies E[BtS(S

TB2
t S)

†STBt |
Ft−1] ⪰ γSI and E[∥S∥2∥S†∥2] ≤ ΥS for some constants γS ,ΥS > 0.

The above two expectations are taken over the randomness of the sketching matrix S. The lower
bound of the projection matrix BtS(S

TB2
t S)

†STBt is commonly required by sketching solvers to
ensure convergence (Gower and Richtárik, 2015). We trivially have γS ≤ 1. The bounded second
moment of the condition number of S is necessary to analyze the difference between two projection ma-
trices, ∥BtS(S

TB2
t S)

†STBt −B⋆S(ST (B⋆)2S)†STB⋆∥ (Na and Mahoney, 2022, Lemma 5.2). Under
(15), both conditions easily hold for various sketching distributions, such as Gaussian sketching S ∼
N (0,Σ) and Uniform sketching S ∼ Unif({ei}di=1), where ei is the i-th canonical basis of Rd (called
randomized Kaczmarz method (Strohmer and Vershynin, 2008)).

3.2 Almost sure convergence and asymptotic normality

We review the almost sure convergence and asymptotic normality of the sketched Newton method as
established in (Na and Mahoney, 2022, Theorems 4.7 and 5.6). We emphasize that our growth condi-
tions on the gradient and Hessian noises are weaker than those assumed in Na and Mahoney (2022),
and by a sharper analysis, our assumption on χt is relaxed from χ > 1 to χ > 0.5(β+1). We show that
all their results still hold, with proofs deferred to Appendix D for completeness.

Theorem 3.5 (Almost sure convergence). Consider the iteration scheme (6). Suppose Assumptions
3.1 – 3.4 hold, the number of sketches satisfies τ ≥ log(γH/4ΥH)/ log ρ with ρ = 1−γS , and the step-
size parameters satisfy β ∈ (0.5, 1], χ > 0.5(β+1), and cβ, cχ > 0. Then, we have xt → x⋆ as t → ∞
almost surely.
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To present the normality result, we need to introduce some additional notation. LetB⋆ = ∇2F (x⋆).

For S1, . . . , Sτ
iid∼ S, we define the product of τ projection matrices as

C̃⋆ =

τ∏
j=1

(I −B⋆Sj(S
T
j (B

⋆)2Sj)
†ST

j B
⋆) (16)

and let C⋆ = E[C̃⋆]. Then, we denote the eigenvalue decomposition of I − C⋆ as

I − C⋆ = UΣUT with Σ = diag(σ1, . . . , σd). (17)

We also define
Ω⋆ = (B⋆)−1E[∇f(x⋆; ξ)∇T f(x⋆; ξ)](B⋆)−1. (18)

With the above notation, we have the following normality guarantee for the scheme (6).

Theorem 3.6 (Asymptotic normality). Suppose Assumptions 3.1 – 3.4 hold, the number of sketches
satisfies τ ≥ log(γH/4ΥH)/ log ρ with ρ = 1−γS , and the stepsize parameters satisfy β ∈ (0.5, 1], χ >
1.5β, and cβ > 1/{1.5(1− ρτ )} for β = 1. Then, we have√

1/ᾱt(xt − x⋆)
d−→ N (0,Ξ⋆),

where Ξ⋆ is the solution to the following Lyapunov equation:({
1−

1{β=1}

2cβ

}
I − C⋆

)
Ξ⋆ + Ξ⋆

({
1−

1{β=1}

2cβ

}
I − C⋆

)
= E

[
(I − C̃⋆)Ω⋆(I − C̃⋆)T

]
. (19)

In fact, the limiting covariance Ξ⋆ has an explicit form as:

Ξ⋆ = U
(
Θ ◦ UTE[(I − C̃∗)Ω⋆(I − C̃∗)T ]U

)
UT with [Θ]k,l =

1

σk + σl − 1{β=1}/cβ
, (20)

where ◦ denotes the matrix Hadamard product. There exists a degenerate case. When the Newton sys-
tems are exactly solved (τ = ∞), then C̃⋆ = C⋆ = 0, Σ = I, and Ξ⋆ = Ω⋆/(2− 1{β=1}/cβ). In this
case, we have Ξ⋆ = Ω⋆/2 for β ∈ (0.5, 1) and Ξ⋆ = Ω⋆ for β = cβ = 1. For the latter setup, we know
Ξ⋆ = Ω⋆ achieves the asymptotic minimax lower bound (Duchi and Ruan, 2021).

4 Online Covariance Matrix Estimation

In this section, we build upon the results in Section 3 and construct an online estimator for the limiting
covariance matrix Ξ⋆. With the covariance estimator, we are then able to perform online statistical in-
ference, such as constructing asymptotically valid confidence intervals for model parameters.

4.1 Weighted sample covariance estimator

Let φt = βt+χt/2 be the centered stepsize. Our weighted sample covariance estimator is defined as

Ξ̂t =
1

t

t∑
i=1

1

φi−1
(xi − x̄t)(xi − x̄t)

T with x̄t =
1

t

t∑
i=1

xi. (21)
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Algorithm 1 Construction of Weighted Sample Covariance Estimator

1: Input: initial iterate x0, positive sequences {βt, χt}, an integer τ > 0, B0 = I;
2: Initialize: W0 = 0 ∈ Rd×d, v0 = x̄0 = 0 ∈ Rd, a0 = 0
3: for t = 0, 1, 2, . . . do
4: Obtain the sketched Newton iterate xt+1 and let φt = βt + χt/2;
5: Update the quantities as:

Wt+1 =
t

t+ 1
Wt +

1/φt

(t+ 1)
xt+1x

T
t+1, vt+1 =

t

t+ 1
vt +

1/φt

t+ 1
xt+1;

x̄t+1 =
t

t+ 1
x̄t +

1

t+ 1
xt+1, at+1 =

t

t+ 1
at +

1/φt

t+ 1
;

6: end for
7: Output: Covariance estimator Ξ̂t = Wt − vtx̄T

t − x̄tv
T
t + atx̄tx̄

T
t .

This estimator can be rewritten as

Ξ̂t = Wt − vtx̄T
t − x̄tv

T
t + atx̄tx̄

T
t ,

where

Wt =
1

t

t∑
i=1

1

φi−1
xix

T
i , vt =

1

t

t∑
i=1

1

φi−1
xi, at =

1

t

t∑
i=1

1

φi−1
. (22)

We mention that Wt,vt, x̄t, at can all be updated recursively, meaning that Ξ̂t can be computed in
a fully online fashion. The detailed steps are shown in Algorithm 1.

We note that the estimator Ξ̂t is in a similar flavor to batch-means covariance estimators designed
for first-order online methods. In particular, Chen et al. (2020b); Zhu et al. (2021) grouped SGD iter-
ates into multiple batches and estimated the covariance Ω⋆ in (3) by computing the sample covariance
among batches. However, a significant difference from those batch-means estimators is that our estima-
tor Ξ̂t is batch-free. Specifically, batch-means estimators rely on additional batch size sequences that
must satisfy certain conditions and largely affect both the theoretical and empirical performance of the
estimators. In contrast, we assign proper weights to the iterates based on the stepsizes, eliminating the
need to tune any extra parameters beyond those required by the online method itself. That being said,
we observe that the memory and computational complexities of inference based on sketched Newton
methods are comparable to those of first-order methods. The memory complexity is dominated by
storing Bt and Wt, incurring a cost of O(d2), independent of the sample size t. The computational
complexity includes O(τ ·nnz(S)d) flops for computing the sketched Newton direction and O(d2) flops
for updating Ξ̂t. For instance, when S ∼ Unif({ei}di=1), Na and Mahoney (2022) showed τ = O(d),
suggesting that the overall computational complexity of sketched Newton inference is O(d2). This
order precisely matches the complexity in Chen et al. (2020b); Zhu et al. (2021).

Remark 4.1. We compare Ξ̂t with the plug-in estimator proposed in Na and Mahoney (2022). Due to
significant challenges in estimating sketch-related quantities in (19), Na and Mahoney (2022) simply
neglected all those quantities and estimated Ω⋆/(2−1{β=1}/cβ) instead. Their plug-in estimator is de-
fined as:

Ξ̃t =
1

2− 1{β=1}/cβ
·B−1

t

(1
t

t∑
i=1

ḡiḡ
T
i

)
B−1

t . (23)
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Comparing Ξ̃t with Ξ̂t, we clearly see that Ξ̃t is not matrix-free as it involves the inverse ofBt (i.e.,O(d3)
flops), which contradicts the spirit of using sketching solvers. Furthermore, Ξ̃t is a biased estimator of
Ξ⋆, leading to invalid confidence coverage even as t → ∞.

4.2 Convergence rate of the estimator

To establish the convergence rate of Ξ̂t, we first present a preparation result that provides error bounds
for the Newton iterate xt and the averaged Hessian Bt. We show that the fourth moments of ∥xt−x⋆∥
and ∥Bt−B⋆∥ scale as O(β2

t +χ4
t /β

4
t ). When χt ≳ β1.5

t , the error χ4
t /β

4
t incurred by the adaptivity of

stepsize dominates. In contrast, when χt ≲ β1.5
t , adaptive stepsizes lead only to a higher-order error. A

matching error bound (for the iterate xt) has been established for SGD methods with χt = 0 (Chen
et al., 2020b). That said, our analysis is more involved due to higher-order methods, sketching com-
ponents, and randomness in stepsizes.

Lemma 4.2 (Error bounds of xt andBt). Suppose Assumptions 3.1 – 3.4 hold, the number of sketches
satisfies τ ≥ log(γH/4ΥH)/ log ρ with ρ = 1−γS , and the stepsize parameters satisfy β ∈ (0, 1), χ >
β, and cβ, cχ > 0. Then, we have

E
[
∥xt − x⋆∥4

]
≲ β2

t +
χ4
t

β4
t

and E
[
∥Bt −B⋆∥4

]
≲ β2

t +
χ4
t

β4
t

.

With the above lemma, we show the convergence rate of Ξ̂t in the following theorem.

Theorem 4.3. Under the conditions in Lemma 4.2, except for strengthening χ > β to χ > 1.5β,
the covariance estimator Ξ̂t defined in (21) satisfies

E
[∥∥Ξ̂t − Ξ⋆

∥∥] ≲ {√βt + χt/β
1.5
t for 0 < β ≤ 0.5,

1/
√

tβt + χt/β
1.5
t for 0.5 < β < 1.

Since
√
βt∨χt/β

1.5
t → 0 and tβt → ∞ as t → ∞ (because χ > 1.5β), Theorem 4.3 states that Ξ̂t is

an (asymptotically) consistent estimator of Ξ⋆. Note that χ > 1.5β is already required by the asymp-
totic normality guarantee (cf. Theorem 3.6). Similar to Lemma 4.2, χ ≥ 2β (i.e., χt ≲ β2

t ) makes the
adaptivity error χt/β

1.5
t higher order.

When we suppress the sketching solver, the limiting covariance Ξ⋆ = Ω⋆/2, meaning that 2Ξ̂t is a
consistent estimator of Ω⋆. Notably, this result suggests that we can estimate the optimal covariance
matrix Ω⋆ without grouping the iterates, computing the batch means, and tuning batch size sequences,
which significantly differs and simplifies the estimation procedure in first-order methods. This advan-
tage is indeed achieved by leveraging Hessian estimates; however, we preserve the computation and
memory costs as low as those of first-order methods. We defer a comprehensive discussion of Theorem
4.3 to Section 4.3.

Theorem 4.3 immediately implies the following corollary, which demonstrates the construction of
confidence intervals/regions.

Corollary 4.4. Let us set the coverage probability as 1− q with q ∈ (0, 1). Consider performing the
online scheme (6) and computing the covariance estimator (21). Suppose Assumptions 3.1 – 3.4 hold,
the number of sketches satisfies τ ≥ log(γH/4ΥH)/ log ρ with ρ = 1−γS , and the stepsize parameters
satisfy β ∈ (0.5, 1), χ > 1.5β, and cβ, cχ > 0. Then, we have

P (x⋆ ∈ Et,q) → 1− q as t → ∞,
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where Et,q = {x ∈ Rd : (x− xt)
T Ξ̂−1

t (x− xt)/ᾱt ≤ χ2
d,1−q}. Furthermore, for any direction w ∈ Rd,

P

(
wTx⋆ ∈

[
wTxt ± z1−q/2

√
ᾱt ·wT Ξ̂tw

])
→ 1− q as t → ∞.

Here, χ2
d,1−q is the (1−q)-quantile of χ2

d distribution, while z1−q/2 is the (1−q/2)-quantile of standard
Gaussian distribution.

We would like to emphasize that the above statistical inference procedure is fully online and matrix-
free. In particular, xt is updated with online nature; for confidence intervals, wT Ξ̂tw is computed on-
line as introduced in Section 4.1; for confidence region, Ξ̂−1

t can also be updated online:

Ξ̂−1
t+1 =

t+ 1

t
Ξ̂−1
t − t+ 1

t
Ξ̂−1
t Rt

(
Πt +RT

t Ξ̂
−1
t Rt

)−1
RT

t Ξ̂
−1
t ,

whereRt = (vt − atx̄t; x̄t − x̄t+1;xt+1 − x̄t+1) ∈ Rd×3 and Πt = (at, 1, 0; 1, 0, 0; 0, 0, tφt) ∈ R3×3. See
Appendix A for the derivation of the above recursion.

4.3 Comparison and generalization of existing studies

In this section, we first compare our weighted sample covariance estimator Ξ̂t with other existing co-
variance estimators for both first- and second-order online methods. Then, we discuss the general-
ization of our estimator to other methods.

• Plug-in estimator of online sketched Newton. Recall from Remark 4.1 that, due to the chal-
lenges of estimating sketch-related quantities C̃⋆ and C⋆ in (19), a recent work Na and Mahoney
(2022) simply neglected these quantities and designed a plug-in covariance estimator Ξ̃t in (23). In ad-
dition to concerns about excessive computation, (Na and Mahoney, 2022, Theorem 5.8) indicated that
for β ∈ (0.5, 1),

∥Ξ̃t − Ξ⋆∥ = O(
√

βt log(1/βt)) +O((1− γS)
τ ).

Here, the second term accounts for the oversight in estimating sketch-related quantities. It decays ex-
ponentially with the sketching steps τ but does not vanish for any finite τ . Thus, Ξ̃t is not a consistent
estimator of Ξ⋆. In the degenerate case where the Newton systems are solved exactly (τ = ∞), Ξ̃t con-
verges to Ξ⋆ at a rate of O(

√
βt log(1/βt)), which is faster than that of our estimator Ξ̂t. In this case,

choosing between Ξ̂t and Ξ̃t involves a trade-off between faster convergence and computational effi-
ciency. It is worth noting that the faster convergence of the plug-in estimator is anticipated (see Chen
et al. (2020b) for a comparison of plug-in and batch-means estimators in SGD methods), since its con-
vergence rate is fully tied to that of the iterates. In contrast, the convergence rate of our sample covari-
ance is additionally confined by the slow decay of correlations among the iterates.

• Batch-means estimator of SGD. As introduced in Section 4.1, Chen et al. (2020b); Zhu et al.
(2021) grouped SGD iterates into batches and estimated the limiting covariance Ω⋆ by the sample co-
variance among batches (each batch mean is treated as one sample). Singh et al. (2023) further relaxed
their conditions from increasing batch sizes to equal batch sizes. Compared to this type of estimators,
our estimator Ξ̂t is batch-free, requiring no additional parameters beyond those of the algorithm itself.
Furthermore, the aforementioned works all showed that the convergence rate of the batch-means esti-
mators is O(1/ 4

√
tβt), which is slower than that of Ξ̂t in Theorem 4.3. Intuitively, the batch-means es-

timators require a long batch of iterates to obtain a single sample, while our batch-free estimator treats
each individual iterate as a single sample, making it more efficient in utilizing (correlated) iterates.
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• Generalization to conditioned SGD. We point out that Ξ̂t can also serve as a consistent covari-
ance estimator for conditioned SGD methods, which follow the update form (4) though Bt may not ap-
proximate the objective Hessian ∇2Ft. Leluc and Portier (2023) established asymptotic normality for
conditioned SGD methods under the assumption of convergence of the conditioning matrix Bt. These
methods include AdaGrad (Duchi et al., 2011), RMSProp (Tieleman, 2012), and quasi-Newton meth-
ods (Byrd et al., 2016) as special cases. Notably, Theorem 4.3 does not requireBt to converge to the
true Hessian ∇2F (x⋆), making our analysis directly applicable to conditioned SGD methods.

•Generalization to sketched Sequential Quadratic Programming. We consider a constrained
stochastic optimization problem:

min
x∈Rd

F (x) = EP [f(x; ξ)] s.t. c(x) = 0,

where F : Rd → R is a stochastic objective with f(·; ξ) as the noisy observation, and c : Rd → Rm im-
poses deterministic constraints on the model parameters x. Such problems appear widely in statistical
machine learning, including constrained M -estimation and algorithmic fairness. Na and Mahoney
(2022) designed an online sketched Sequential Quadratic Programming (SQP) method for solving the
problem. Define L(x,λ) = F (x)+λT c(x) as the Lagrangian function, where λ ∈ Rm are the dual vari-
ables. The sketched SQP method can be regarded as applying the sketched Newton method to L(x,λ),
leading to the update (xt+1,λt+1) = (xt,λt) + ᾱt(∆̄xt, ∆̄λt), where (∆̄xt, ∆̄λt) is the sketched so-
lution to the primal-dual Newton system:(

Bt GT
t

Gt 0

)(
∆xt

∆λt

)
= −

(
∇̄xLt

ct

)
.

Here, analogous to (4), Bt ≈ ∇2
xLt is an estimate of the Lagrangian Hessian with respect to x, Gt =

∇ct ∈ Rm×d is the constraints Jacobian, and ∇̄xLt = ∇F (xt; ξt) +GT
t λt is the estimate of the La-

grangian gradient with respect to x. Na and Mahoney (2022) established asymptotic normality for the
SQP iterate (xt,λt). We observe that the constraints are not essential in the SQP analysis; therefore,
our construction of Ξ̂t is naturally applied to the covariance estimation of the sketched SQP method.
An empirical demonstration of Ξ̂t for constrained problems is presented in Section 5.3.

5 Numerical Experiment

In this section, we demonstrate the empirical performance of the weighted sample covariance matrix
Ξ̂t on both regression problems and benchmark CUTEst problems (Gould et al., 2014). We compare Ξ̂t

with two other online covariance estimators: the plug-in estimator Ξ̃t in (23) (based on sketched New-
ton) and the batch-means estimator Ξ̄t (based on SGD) (Zhu et al., 2021, Algorithm 2). We evaluate
the performance of each estimator by both the (relative) covariance estimation error and the coverage
rate of constructed confidence intervals. We defer some implementation details and results to Ap-
pendix F due to the space limit.

5.1 Linear regression

We consider the linear regression model:

ξb = ξ
T
a x

⋆ + ε,
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where ξ = (ξa, ξb) ∈ Rd × R is the feature-response vector and ε ∼ N (0, σ2) is the Gaussian noise.
For this model, we use the squared loss defined as f(x; ξ) = 1

2(ξb−ξ
T
a x)

2. In our experiment, we apply
Gaussian features ξa∼N (0,Σa) with different dimensions and covariance matrix Σa. In particular, we
vary d ∈ {20, 40, 60, 100}, and for each d, we consider three types of covariance matrices. (i) Identity
matrix: Σa = I. (ii) Toeplitz matrix: [Σa]i,j = r|i−j| with r ∈ {0.4, 0.5, 0.6}. (iii) Equi-correlation ma-
trix: [Σa]i,i = 1 and [Σa]i,j = r for i ̸= j, with r ∈ {0.1, 0.2, 0.3}. The true model parameter is set
as x⋆ = (1/d, . . . , 1/d)T ∈ Rd. This simulation setting follows directly from existing studies (Chen
et al., 2020b; Zhu et al., 2021; Na and Mahoney, 2022).

For the batch-means estimator Ξ̄t, we adopt the setup in Zhu et al. (2021) by setting the stepsize of
SGD as βt = t−β/2 and the batch size as am = ⌊m2/(1−β)⌋ (in their notation) with β = 0.505. For both
the plug-in estimator Ξ̃t and our sample covariance estimator Ξ̂t, we implement sketched Newton meth-
ods with varying sketching steps τ ∈ {10, 20, 40,∞}. When τ = ∞, the scheme reduces to standard
Newton method. We perform the Kaczmarz method, where the sketching distribution in (9) is S ∼
Unif({ei}di=1) (cf. Section 3.1). We let βt = t−β and ᾱt ∼ Unif[βt, βt+β2

t ]. For all estimators, we ini-
tialize the method at x0 = 0, run 2×105 iterations, and aim to construct confidence intervals for the
averaged parameters

∑d
i=1 x

⋆
i /d. All the results are averaged over 200 independent runs.

Our results are summarized in Table 1. From the table 1, we observe that, in most cases, the
empirical coverage rate of the confidence interval based on Ξ̂t is approximately 95%. In contrast,
confidence interval based on Ξ̄t shows a tendency for undercoverage, which is probably due to the
slower convergence of Ξ̄t than Ξ̂t. Moreover, Ξ̂t works well under the cases where it is an unbiased
estimator (Σa = I or τ = ∞), but the coverage rate falls under 95% in other scenarios. This
shows that the bias greatly compromises the performance of confidence intervals. Comprehensive
exploration of varying r is reported in Appendix F.1.

To further visualize the table, we use the case of Topelitz Σa with r = 0.5 under d = 5 as an
example, plotting the trajectories of the average covariance estimation error and empirical coverage
rate. The plots are presented in Figure 1. It is important to note that, under the same parameter
setting, the limiting covariance Ξ⋆ is different for ASGD and the sketched Newton methods with
varying τ . To ensure a fair comparison, we evaluate the relative error ∥Ξ̂t − Ξ⋆∥/∥Ξ⋆∥. From the
first row of plots, we see that the absolute value of the slope of the green lines exceeds (1− 0.505)/2,
which aligns with the theoretical upper bound established in Theorem 4.3. The plug-in estimator
exhibits rapid convergence; however, its bias is evident in the sketched Newton plot. Furthermore,
we note Ξ̄t converges slower than Ξ̂t, consistent with the theoretical results. Additionally, we observe
oscillations in the estimation error of Ξ̄t, corresponding to the batching process, which is undesirable
as increasing the sample size does not always guarantee a reduction in estimation error. This is
because the limited sample size in a newly created batch introduces errors. The second row of plots
demonstrates that Ξ̂t performs well in statistical inference for model parameters.

5.2 Logistic regression

Next, we consider the logistic regression model:

P(ξb | ξa) =
exp(ξb · ξTa x⋆)

1 + ξb · exp(ξb · ξTa x⋆)
with ξb ∈ {−1, 1}.

For this model, we use the log loss defined as f(x; ξ) = log
(
1+exp(−ξb · ξTa x)

)
. We follow the same

experimental setup as in the linear regression model in Section 5.1.
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Σa Dim
ASGD

Sketched Newton
τ = ∞ τ = 10 τ = 20 τ = 40

Ξ̄t Ξ̃t Ξ̂t Ξ̃t Ξ̂t Ξ̃t Ξ̂t Ξ̃t Ξ̂t

Identity

20 89.50 95.00 95.50 95.50 96.00 95.50 94.50 96.00 95.50
40 86.00 97.00 96.50 96.00 95.50 94.50 94.50 94.00 92.50
60 87.50 95.00 95.00 94.50 93.50 96.50 95.00 95.50 95.00
100 92.00 100.0 100.0 95.00 93.00 95.00 91.50 95.50 95.50

Toeplitz r = 0.5

20 90.00 96.00 96.50 89.50 95.50 94.00 97.00 90.50 96.00
40 88.50 94.50 94.50 94.00 97.00 89.00 96.00 90.00 96.50
60 91.00 96.00 96.00 91.00 97.00 85.00 97.00 87.00 93.50
100 90.50 100.0 100.0 92.50 97.50 86.50 94.50 88.50 93.50

Equi-corr r = 0.2

20 91.50 96.00 96.50 82.50 94.50 84.00 96.00 89.50 96.00
40 88.50 98.00 98.50 71.00 92.50 74.50 94.00 79.50 98.00
60 86.00 97.00 96.00 70.00 96.00 75.00 94.50 77.00 96.00
100 83.50 100.0 100.0 71.00 95.50 70.00 96.00 68.50 93.50

Table 1: The empirical coverage rate (%) for linear regression at confidence level 95%.

Figure 1: The average relative covariance estimation error and empirical coverage rate (%). The
first row displays the relative error for three methods: ASGD, exact Newton, and sketched Newton
(from left to right). For ASGD, the batch-means estimator Ξ̄t is used, while for both Newton methods,
the plug-in estimator Ξ̃t and the weighted sample covariance matrix Ξ̂t are compared. The second
row similarly presents the empirical coverage rate across various settings for these methods. The
plots reflect the consistency of Ξ̂t and demonstrate its superior performance in statistical inference.
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Our results are summarized in Table 2 and Figure 2, where we observe similar patterns as in
the linear regression case. The performance of Ξ̂t in logistic regression further demonstrates the
effectiveness and reliability of our estimator across different settings. A detailed comparison under
more comprehensive settings can be found in Appendix F.1.

Σa Dim
ASGD

Sketched Newton
τ = ∞ τ = 10 τ = 20 τ = 40

Ξ̄t Ξ̃t Ξ̂t Ξ̃t Ξ̂t Ξ̃t Ξ̂t Ξ̃t Ξ̂t

Identity

20 85.00 96.50 96.00 97.00 97.00 93.50 93.50 97.50 97.00
40 84.00 95.00 94.00 96.50 94.00 97.50 96.00 97.00 96.50
60 83.50 95.00 95.00 95.00 95.00 93.00 91.50 93.50 93.00
100 83.50 94.00 94.50 95.00 92.00 96.00 93.00 96.00 95.00

Toeplitz r = 0.5

20 85.50 95.00 95.00 90.50 96.00 94.50 97.00 95.00 96.50
40 85.50 93.50 93.50 89.50 96.00 93.00 95.50 90.00 94.00
60 88.00 94.50 94.00 93.00 95.50 87.50 93.50 91.00 96.00
100 85.00 93.00 93.00 93.00 96.00 89.00 93.50 92.00 95.50

Equi-corr r = 0.2

20 87.50 96.50 96.00 85.50 96.00 89.00 95.00 92.50 96.50
40 86.00 96.00 95.00 81.50 92.50 86.50 97.00 84.50 95.50
60 85.00 93.50 93.50 79.00 94.00 80.00 97.50 79.00 95.50
100 76.00 96.50 96.00 74.00 92.50 77.00 92.50 73.00 94.50

Table 2: The empirical coverage rate (%) for logistic regression at confidence level 95%.

Figure 2: The average relative covariance estimation error and empirical coverage rate (%). See
Figure 1 for interpretation.
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Problem
σ2 = 1 σ2 = 10−1 σ2 = 10−2 σ2 = 10−4

Ξ̃t Ξ̂t Ξ̃t Ξ̂t Ξ̃t Ξ̂t Ξ̃t Ξ̂t

HS48 2.080 0.221 2.080 0.231 2.077 0.241 2.081 0.245

HS78 1.913 0.290 1.913 0.291 1.911 0.279 1.911 0.270

HS7 0.113 0.099 0.070 0.095 0.070 0.102 0.069 0.102

MARATOS 0.132 0.096 0.093 0.091 0.089 0.089 0.087 0.083

Table 3: The average covariance estimation error for CUTEst problems.

5.3 CUTEst

In this section, we explore the empirical performance of Ξ̂t in constrained optimization, as discussed in
Section 4.3. We perform four equality-constrained problems from the CUTEst test set: HS7, MARATOS,
HS48, and HS78 (Gould et al., 2014). Due to the presence of constraints, SGD is not applicable, so we
compare Ξ̂t and Ξ̃t only. For each problem and at each iteration, the CUTEst package provides true
evaluations of the function, gradient, and Hessian. With those quantities, we generate our estimates by
letting ḡt ∼ N (∇Ft, σ

2(I+11T )) and [H̄t]i,j = [H̄t]j,i ∼ N ([∇2Ft]i,j , σ
2). We vary the sampling vari-

ance σ2 from σ2 ∈ {10−4, 10−2, 10−1, 1} and set τ = 5. The other parameters are set as in Section 5.1,
while the problem initialization is provided by the CUTEst package. The true solution is computed us-
ing the IPOPT solver (Wächter and Biegler, 2005).

The results are summarized in Table 3. In the previous subsections, we have demonstrated
the consistency of Ξ̂t leads to its superior performance in statistical inference. For simplicity, we
report only the covariance estimation error here. The results show that the estimation error of Ξ̂t is
consistently small across all settings, showing its robustness to noise levels. In contrast, Ξ̃t performs
well as an estimator for problems HS7 and MARATOS, where the bias is small; however, for problems
HS48 and HS78, where the bias is more evident, the estimation error of Ξ̃t is significantly larger.
The plots of the trajectory of estimation error are provided in Appendix F.2.

6 Conclusion and Future Work

In this paper, we designed a limiting covariance matrix estimator for sketched stochastic Newton meth-
ods. Our estimator is fully online and constructed entirely from the Newton iterates. We established the
consistency and convergence rate of the estimator. Compared to plug-in estimators for second-order
methods, our estimator is asymptotically consistent and more computationally efficient, requiring no
matrix factorization. Compared to batch-means estimators for first-order methods, our estimator is
batch-free and exhibits faster convergence. Based on our study, we can then construct asymptotically
valid confidence intervals/regions for the model parameters using sketched Newton methods. We also
discussed the generalization of our estimator to constrained stochastic problems. Extensive experi-
ments on regression problems demonstrate the superior performance of our estimator.

For future research, it would be of interest to explore the lower bound for the online covariance esti-
mation problem, as it provides insights into the statistical efficiency of our weighted sample covariance.
Additionally, constructing difference test statistics with different asymptotic distributions based on
(sketched) Newton iterates could be promising. In particular, although the normality achieved by New-
ton methods is asymptotically minimax optimal (Na and Mahoney, 2022), recent studies have ob-
served that confidence intervals constructed using other test statistics, such as t-statistics (Zhu et al.,
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2024) and their variants (Lee et al., 2022; Luo et al., 2022; Chen et al., 2024), may exhibit better cover-
age rates in some problems due to the absence of further covariance estimation. Lastly, performing in-
ference based on Newton methods in non-asymptotic and high-dimensional settings, where the prob-
lem dimension grows with the sample size, would also be an interesting direction.
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A Online Update of Ξ̂−1
t

We introduce how to online update Ξ̂−1
t for constructing the confidence region in Corollary 4.4. By the

definition of Ξ̂t in (21), we have

Ξ̂t+1
(21)
=

1

t+ 1

t+1∑
i=1

1

φi−1
(xi − x̄t+1)(xi − x̄t+1)

T

=
1

t+ 1

t∑
i=1

1

φi−1
(xi − x̄t+1)(xi − x̄t+1)

T +
1/φt

t+ 1
(xt+1 − x̄t+1)(xt+1 − x̄t+1)

T

=
t

t+ 1

(
1

t

t∑
i=1

1

φi−1
(xi − x̄t)(xi − x̄t)

T +
1

t

t∑
i=1

1

φi−1
(xi − x̄t)(x̄t − x̄t+1)

T

+
1

t

t∑
i=1

1

φi−1
(x̄t − x̄t+1)(xi − x̄t)

T +
1

t

t∑
i=1

1

φi−1
(x̄t − x̄t+1)(x̄t − x̄t+1)

T

)
+

1/φt

t+ 1
(xt+1 − x̄t+1)(xt+1 − x̄t+1)

T

(22)
=

t

t+ 1

(
Ξ̂t + (vt − atx̄t)(x̄t − x̄t+1)

T + (x̄t − x̄t+1)(vt − atx̄t)
T + at(x̄t − x̄t+1)(x̄t − x̄t+1)

T

)
+

1/φt

t+ 1
(xt+1 − x̄t+1)(xt+1 − x̄t+1)

T .

Let us define two matrices Rt ∈ Rd×3 and Λt ∈ R3×3 as

Rt = (vt − atx̄t; x̄t − x̄t+1;xt+1 − x̄t+1) , Λt =

0 1 0
1 at 0
0 0 1/(tφt)

 .

Then, we have

Ξ̂t+1 =
t

t+ 1

(
Ξ̂t +RtΛtR

T
t

)
.

Thus, by Sherman–Morrison–Woodbury formula, we obtain

Ξ̂−1
t+1 =

t+ 1

t
Ξ̂−1
t − t+ 1

t
Ξ̂−1
t Rt

(
Λ−1
t +RT

t Ξ̂
−1
t Rt

)−1
RT

t Ξ̂
−1
t .

B Preparation Lemmas

We introduce some preparation lemmas regarding the stepsize sequences and the update direction.

Lemma B.1 (Na and Mahoney (2022), Lemma B.1). Suppose {φi}i is a positive sequence that sat-
isfies lim

i→∞
i(1− φi−1/φi) = φ. Then, for any p ≥ 0, we have lim

i→∞
i
(
1− φp

i−1/φ
p
i

)
= p · φ.

Lemma B.2 (Na and Mahoney (2022), Lemma B.3(a)). Let {ϕi}i, {φi}i, {σi}i be three positive
sequences. Suppose1

lim
i→∞

i (1− ϕi−1/ϕi) = ϕ < 0, lim
i→∞

φi = 0, lim
i→∞

iφi = φ̃ (B.1)

1In fact, ϕ < 0 is only required by Lemma B.3(b) in Na and Mahoney (2022), and the statements in Lemma B.3(a)
hold for any constant ϕ.
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for a constant ϕ and a (possibly infinite) constant φ̃ ∈ (0,∞]. For any l ≥ 1, if we further have

l∑
k=1

σk + ϕ/φ̃ > 0, (B.2)

then the following results hold as t → ∞:

1

ϕt

t∑
i=0

t∏
j=i+1

l∏
k=1

(1− φjσk)φiϕi −→
1∑l

k=1 σk + ϕ/φ̃
, (B.3)

1

ϕt

{ t∑
i=0

t∏
j=i+1

l∏
k=1

(1− φjσk)φiϕiai + b ·
t∏

j=0

l∏
k=1

(1− φjσk)

}
−→ 0, (B.4)

where the second result holds for any constant b and any sequence {at}t such that at → 0.

Lemma B.3. Suppose {ϕi}i and {σi}i are two positive sequences, and {ϕi}i satisfies limi→∞ i(1−
ϕi−1/ϕi) = ϕ < 0 for a constant ϕ. Let φi = cφ/(i+1)φ+o(1/(i+1)φ) for constants cφ > 0 and φ ∈
(0, 1). For any l ≥ 1, we have

∣∣∣ 1
ϕt

t∑
i=0

t∏
j=i+1

l∏
k=1

(1− φjσk)φiϕi −
1∑l

k=1 σk

∣∣∣ ≲


φt, φ ∈ (0, 0.5),(
0.5−

ϕ/c2φ

(
∑l

k=1 σk)
2

)
φt, φ = 0.5,

− ϕ

(
∑l

k=1 σk)
2
· 1

tφt
, φ ∈ (0.5, 1).

Lemma B.4. Suppose {ϕi}i, {φi}i, {σi}i be three positive sequences that satisfy the assumptions in
Lemma B.2. Let {ηi}i be a positive sequence such that limi→∞ ηi/φi = 1. For any l ≥ 1, if

∑l
k=1 σk/2+

ϕ/φ̃ > 0, then we have

t∏
i=0

l∏
k=1

|1− ηiσk|+
t∑

i=0

t∏
j=i+1

l∏
k=1

|1− ηjσk|φiϕi ≲
1∑l

k=1 σk/2 + ϕ/φ̃
· ϕt.

Lemma B.5. For the t-th iteration, let us define two sketching matrices

C̃t,j = I −
(
BtSt,j(S

T
t,jB

2
t St,j)

†ST
t,jBt

)
and C̃t =

τ∏
j=1

C̃t,j , (B.5)

and we also let Ct = E[C̃t | Ft−1]. Then, under Assumptions 3.2 and 3.4, the following results hold (re-
call that C⋆ is defined in (16)):

(a) We have ∆̄xt = (I − C̃t)∆xt = −(I − C̃t)B
−1
t ḡt for any t ≥ 0.

(b) We have E[∆̄xt | Ft−1] = −(I − Ct)B
−1
t ∇Ft for any t ≥ 0.

(c) We have ∥Ct∥ ≤ ρτ for any t ≥ 0 with ρ = 1− γS . When xt → x⋆, we also have ∥C⋆∥ ≤ ρτ .

(d) When xt → x⋆, we have (1− ρτ )I ⪯ I − C⋆ ⪯ I.
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C Proofs of Preparation Lemmas

C.1 Proof of Lemma B.3

We note that (B.1) is satisfied with φ̃ = ∞ and (B.2) holds as
∑l

k=1 σk + ϕ/φ̃ =
∑l

k=1 σk > 0. Thus,
Lemma B.2 holds and its proof (Na and Mahoney, 2022, (C.1)) suggests the following decomposition

1

ϕt

t∑
i=0

t∏
j=i+1

l∏
k=1

(1− φjσk)φiϕi −
1∑l

k=1 σk
=

1

ϕt

t∏
j=1

l∏
k=1

(1− φjσk) · ϕ0

(
φ0 −

1∑l
k=1 σk

)

+
1

ϕt

t∑
i=1

t∏
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l∏
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(1− φjσk)ϕi

{
φi −

1∑l
k=1 σk

(
1− ϕi−1

ϕi

l∏
k=1

(1− φiσk)
)}

=: I + II. (C.1)

We first calculate the rate of the term in the curly bracket in II. We note that

l∏
k=1

(1− φiσk) = 1−
l∑

k=1

σkφi + 0.5
{( l∑

k=1

σk
)2 − ( l∑

k=1

σ2
k

)}
φ2
i + o(φ2

i ),

ϕi−1

ϕi
= 1− ϕ · 1

i+ 1
+ o
( 1

i+ 1

)
.

Thus, the rate of the multiplication of these two terms is

ϕi−1

ϕi

l∏
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(1− φiσk) =
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i + o(φ2
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+ o
( 1
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)
, φ ∈ (0.5, 1).

(C.2)

Let us first consider the case φ ∈ (0.5, 1). We plug the above display above into II in (C.1) and get

II = − ϕ∑l
k=1 σk

· 1

ϕt

t∑
i=1

t∏
j=i+1

l∏
k=1

(1− φjσk)φi ·
{

ϕi

(i+ 1)φi
+ o
( ϕi

(i+ 1)φi

)}
.

We note that

lim
i→∞

i

(
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ϕi−1/
(
iφi−1

)
ϕi/
(
(i+ 1)φi

)) = lim
i→∞

i

(
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ϕi
+

ϕi−1

ϕi

(
1−

1/
(
iφi−1

)
1/
(
(i+ 1)φi

))) = ϕ+ φ− 1 < 0,

so we can apply Lemma B.2 and derive

lim
t→∞

1

ϕt/
(
(t+ 1)φt

) t∑
i=1

t∏
j=i+1

l∏
k=1

(1− φjσk)φi ·
ϕi

(i+ 1)φi

(B.3)
=

1∑l
k=1 σk

,

lim
t→∞

1

ϕt/
(
(t+ 1)φt

) t∑
i=1

t∏
j=i+1

l∏
k=1

(1− φjσk)φi · o
( ϕi

(i+ 1)φi

)
(B.4)
= 0.

23



Combining the two displays, we have |II| ≲ − ϕ

(
∑l

k=1 σk)2
· 1
(t+1)φt

. For the term I in (C.1), we have

lim
t→∞

1

ϕt/
(
(t+ 1)φt

) t∏
j=1

l∏
k=1

(1− φjσk) · ϕ0

(
φ0 −

1∑l
k=1 σk

)
(B.4)
= 0.

This indicates |I| = o(1/(t+ 1)φt). Combining the rates of |I| and |II| with (C.1), we complete the
proof for the case φ ∈ (0.5, 1). For the case φ = 0.5, we know from (C.2) and (C.1) that

II =
0.5{

(∑l
k=1 σk

)2 − (∑l
k=1 σ

2
k

)
} − ϕ/c2φ∑l

k=1 σk

1

ϕt

t∑
i=1

t∏
j=i+1

l∏
k=1

(1− φjσk)φiϕi · {φi + o(φi)} .

Following the same analysis as above and applying Lemma B.2, we obtain

|II| ≲
0.5{

(∑l
k=1 σk

)2 − (∑l
k=1 σ

2
k

)
} − ϕ/c2φ

(
∑l

k=1 σk)
2

φt ≤

(
0.5−

ϕ/c2φ

(
∑l

k=1 σk)
2

)
φt.

We also have |I| = o(φt) and, hence, complete the proof for the case φ = 0.5. The proof for the case
φ ∈ (0, 0.5) can be done similarly by noting that

II =
0.5{

(∑l
k=1 σk

)2 − (∑l
k=1 σ

2
k

)
}∑l

k=1 σk

1

ϕt

t∑
i=1

t∏
j=i+1

l∏
k=1

(1− φjσk)φiϕi · {φi + o(φi)} .

We complete the proof.

C.2 Proof of Lemma B.4

Since limt→∞ ηt/φt = 1 and limt→∞ φt = 0, there exists a fixed integer t̃ such that for any t ≥ t̃ and
1 ≤ k ≤ l, we have ηt ≥ φt/2 and 0 < 1− ηtσk ≤ 1−φtσk/2. Define a sequence {ϕ̃t}∞t=t̃−1

as follows:

ϕ̃t =


ϕt +

t̃−2∑
i=0

t̃−1∏
j=i+1

l∏
k=1

|1− ηjσk|φiϕi, t = t̃− 1,

ϕt, t ≥ t̃.

With the above sequence, we use the techniques in (Na and Mahoney, 2022, (E.19)) and rewrite the
following series as

t∑
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t∏
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l∏
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l∏
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=
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l∏
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|1− ηjσk|φiϕi +
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j=i+1

l∏
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=

t∑
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j=i+1

l∏
k=1
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t∑
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l∏
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(B.3)

≲
1∑l

k=1 σk/2 + ϕ/φ̃
· ϕt.
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Additionally, we know

t∏
i=0

l∏
k=1

|1− ηiσk| =
t∏

i=t̃

l∏
k=1

|1− ηiσk| ·
t̃−1∏
i=0

l∏
k=1

|1− ηiσk|

≤
t∏

i=t̃

l∏
k=1

(1− φiσk/2) ·
t̃−1∏
i=0

l∏
k=1

|1− ηiσk|
(B.4)
= o(ϕt).

We complete the proof.

C.3 Proof of Lemma B.5

Recalling Bt∆xt = −ḡt, we subtract ∆xt from both sides of (9) and obtain

∆xt,j+1 −∆xt =
(
I −BtSt,j(S

T
t,jB

2
t St,j)

†ST
t,jBt

)
(∆xt,j −∆xt) = C̃t,j(∆xt,j −∆xt).

Since ∆xt,0 = 0, we complete the proof of (a). By the independence between sketching and sampling
and the unbiasedness of ḡt in Assumption 3.2, we complete the proof of (b). (c) can be found in
Lemma 4.4 and Corollary 5.4 in Na and Mahoney (2022). (d) is an immediate result from (c) by
observing that C⋆ ⪰ 0.

D Proofs of Section 3.2

To ease the presentation, we assume throughout the proof and without loss of generality that all upper
bound constants in the assumptions ΥL,ΥS ,ΥH , Cg,1, Cg,2, CH,1, CH,2 ≥ 1, and the lower bound con-
stant 0 < γH ≤ 1. The range of these constants is not crucial to the analysis; all results still hold by
replacing γH by γH ∧ 1 (similar for other constants).

D.1 Proof of Theorem 3.5

By Assumption 3.3, ∥∇2F (x)∥ ≤ ΥH . Applying Taylor’s expansion, we have

Ft+1 − F ⋆

≤ Ft − F ⋆ + ᾱt∇F T
t ∆̄xt +

ΥH

2
ᾱ2
t ∥∆̄xt∥2

= Ft − F ⋆ + ᾱtE[∇F T
t ∆̄xt | Ft−1] + ᾱt

(
∇F T

t ∆̄xt − E[∇F T
t ∆̄xt | Ft−1]

)
+

ΥH

2
ᾱ2
t ∥∆̄xt∥2.(D.1)

Then, we take expectation on both sides conditioning on Ft−1 and obtain

E[Ft+1 − F ⋆ | Ft−1] ≤ Ft − F ⋆ + E
[
ᾱtE[∇F T

t ∆̄xt | Ft−1] | Ft−1

]
+ E

[
ᾱt

{
∇F T

t ∆̄xt − E[∇F T
t ∆̄xt | Ft−1]

}
| Ft−1

]
+

ΥH

2
E
[
ᾱ2
t ∥∆̄xt∥2 | Ft−1

]
. (D.2)
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For the second term on the right hand side, we apply Assumption 3.3, Lemma B.5(b, c), and have

E
[
ᾱtE[∇F T

t ∆̄xt | Ft−1] | Ft−1

]
= −∇F T

t (I − Ct)B
−1
t ∇Ft · E

[
ᾱt | Ft−1

]
≤
(
− 1

ΥH
∥∇Ft∥2 +

ρτ

γH
∥∇Ft∥2

)
· E
[
ᾱt | Ft−1

]
≤ − 3

4ΥH
βt∥∇Ft∥2 (by ρτ ≤ γH/4ΥH and βt ≤ ᾱt). (D.3)

For the third term in (D.2), we note E
[
∇F T

t ∆̄xt − E[∇F T
t ∆̄xt | Ft−1] | Ft−1

]
= 0. Thus, we have

(recall φt = βt + χt/2)

E
[
ᾱt

{
∇F T

t ∆̄xt − E[∇F T
t ∆̄xt | Ft−1]

}
| Ft−1

]
= E

[
(ᾱt − φt)∇F T

t

(
∆̄xt − E[∆̄xt | Ft−1]

)
| Ft−1

]
≤ χt

2
∥∇Ft∥E

[∥∥∆̄xt − E[∆̄xt | Ft−1]
∥∥ | Ft−1

]
(by |ᾱt − φt| ≤ χt/2). (D.4)

By Lemma B.5(a, b, c), we obtain∥∥∆̄xt − E[∆̄xt | Ft−1]
∥∥ =

∥∥(I − C̃t)B
−1
t ḡt − (I − Ct)B

−1
t ∇Ft

∥∥
≤ ∥Ct − C̃t∥∥B−1

t ∥∥∇Ft∥+ ∥I − C̃t∥∥B−1
t ∥∥ḡt −∇Ft∥

(15)

≤ 2

γH
∥∇Ft∥+

2

γH
∥ḡt −∇Ft∥.

Thus, applying Assumption 3.2, we obtain

E
[∥∥∆̄xt − E[∆̄xt | Ft−1]

∥∥ | Ft−1

]
≤ 2

γH
∥∇Ft∥+

2C
1/4
g,1

γH
∥xt − x⋆∥+

2C
1/4
g,2

γH

≤
4C

1/4
g,1

γ2H
∥∇Ft∥+

2C
1/4
g,2

γH
(by Cg,1 ≥ 1), (D.5)

where the last inequality also uses the property of strong convexity of F (x) (Nesterov, 2018)

γH
2

∥xt − x⋆∥2 ≤ Ft − F ⋆ ≤ 1

2γH
∥∇Ft∥2 . (D.6)

Combining (D.4) and (D.5), we get

E
[
ᾱt

{
∇F T

t ∆̄xt − E[∇F T
t ∆̄xt | Ft−1]

}
| Ft−1

]
≤

2C
1/4
g,1

γ2H
χt∥∇Ft∥2 +

C
1/4
g,2

γH
χt∥∇Ft∥

≤
2C

1/4
g,1

γ2H
χt∥∇Ft∥2 +

1

4ΥH
βt∥∇Ft∥2 +

ΥHC
1/2
g,2

γ2H
· χ

2
t

βt
(by Young’s inequality). (D.7)

Let ηt = βt + χt. We apply Lemma B.5(a) and bound the last term in (D.2) by

E
[
ᾱ2
t ∥∆̄xt∥2 | Ft−1

]
≤ E

[
ᾱ2
t ∥(I + C̃t)∥2∥B−1

t ∥2∥ḡt∥2 | Ft−1

]
≤ 8

γ2H
η2t

(
∥∇Ft∥2 + E

[
∥ḡt −∇Ft∥2 | Ft−1

])
≤

16C
1/2
g,1

γ4H
η2t ∥∇Ft∥2 +

8C
1/2
g,2

γ2H
η2t (by Assumption 3.2). (D.8)
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We plug (D.3), (D.7), and (D.8) into (D.2), and obtain

E[Ft+1 − F ⋆ | Ft−1]

≤ Ft − F ⋆ −
( 1

2ΥH
βt −

2C
1/4
g,1

γ2H
χt −

8ΥHC
1/2
g,1

γ4H
η2t

)
∥∇Ft∥2 +

4ΥHC
1/2
g,2

γ2H

(
χ2
t

βt
+ η2t

)
.

Since βt = cβ/(t+1)β with β ∈ (0.5, 1] and χt = cχ/(t+1)χ with χ > 0.5(β +1) ≥ β, there exists a

fixed integer t0 such that
2C

1/4
g,1

γ2
H

χt +
8ΥHC

1/2
g,1

γ4
H

η2t ≤ 1
4ΥH

βt for all t ≥ t0. Thus, for t ≥ t0, we have

E[Ft+1 − F ⋆ | Ft−1] ≤ Ft − F ⋆ − 1

4ΥH
βt∥∇Ft∥2 +

4ΥHC
1/2
g,2

γ2H

(
χ2
t

βt
+ η2t

)
.

Note that
∑∞

t=t0
χ2
t /βt < ∞ and

∑∞
t=t0

η2t ≲
∑∞

t=t0
β2
t +
∑∞

t=t0
χ2
t < ∞. Thus, we apply the Robbins-

Siegmund Theorem (Duflo, 2013, Theorem 1.3.12) and conclude that Ft−F ⋆ converges to a finite ran-
dom variable, and

∑∞
t=t0

βt ∥∇Ft∥2 < ∞ almost surely. Furthermore, we have lim inft→∞ ∥∇Ft∥ = 0
due to

∑∞
t=t0

βt = ∞, which leads to lim inft→∞(Ft−F ⋆) = 0 according to (D.6). Since Ft−F ⋆ con-
verges almost surely, the conclusion can be strengthened to limt→∞ Ft−F ⋆ = 0. Again, we apply (D.6)
and obtain limt→∞ xt = x

⋆ almost surely. This completes the proof.

D.2 Proof of Theorem 3.6

The proof of asymptotic normality is almost identical to the proof of Theorem 5.6 in Na and Mahoney
(2022). Since χ > 1.5β ⇒ χ > 0.5(β + 1), we have xt → x⋆ almost surely, as proved in Theorem 3.5.
Therefore, we only have to note that our growth conditions in Assumptions 3.2 and 3.3 on gradients
and Hessians do not affect the proof of normality (though they affect the proof of convergence), since
the term ∥xt − x⋆∥ in the growth conditions converges to 0 almost surely.

E Proofs of Section 4.2

To clear up tedious constants, we assume ηt = βt+χt ≤ 1, ∀t ≥ 0, without loss of generality for the re-
mainder of this paper. Note that this condition is non-essential, since ηt → 0 and the condition will al-
ways hold for sufficiently large, fixed t.

E.1 Proof of Lemma 4.2

We separate the proof into two parts.

Part 1: Bound of E[∥xt −x⋆∥4]. We take square on both sides of (D.1) and take expectation con-
ditioning on Ft−1, then we get

E
[
(Ft+1 − F ⋆)2 | Ft−1

]
≤ (Ft − F ⋆)2 + E

[
2ᾱt(Ft − F ⋆)∇F T

t ∆̄xt | Ft−1

]
+ E

[
ᾱ2
tΥH(Ft − F ⋆)∥∆̄xt∥2 | Ft−1

]
+ E

[
ᾱ2
t (∇F T

t ∆̄xt)
2 | Ft−1

]
+ E

[
ᾱ3
tΥH∇F T

t ∆̄xt∥∆̄xt∥2 | Ft−1

]
+

1

4
E
[
ᾱ4
tΥ

2
H∥∆̄xt∥4 | Ft−1

]
. (E.1)

We rearrange these terms by the order of ᾱt and analyze them one by one.

• Term 1: E[2ᾱt(Ft − F ⋆)∇F T
t ∆̄xt | Ft−1].
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This term can be decomposed as

E[2ᾱt(Ft − F ⋆)∇F T
t ∆̄xt | Ft−1] = 2(Ft − F ⋆)E

[
ᾱtE[∇F T

t ∆̄xt | Ft−1] | Ft−1

]
+ 2(Ft − F ⋆)E

[
ᾱt

{
∇F T

t ∆̄xt − E[∇F T
t ∆̄xt | Ft−1]

}
| Ft−1

]
.

For the first term on the right hand side, by (D.3) and (D.6), we have

2(Ft−F ⋆)E
[
ᾱtE[∇F T

t ∆̄xt | Ft−1] | Ft−1

]
≤ − 3

2ΥH
βt(Ft−F ⋆)∥∇Ft∥2 ≤ −3γH

ΥH
βt(Ft−F ⋆)2. (E.2)

For the second term on the right hand side, (D.4) and (D.5) give us

2(Ft − F ⋆)E
[
ᾱt

{
∇F T

t ∆̄xt − E[∇F T
t ∆̄xt | Ft−1]

}
| Ft−1

]
≤ χt(Ft − F ⋆)∥∇Ft∥

( 2

γH
∥∇Ft∥+

2C
1/4
g,1

γH
∥xt − x⋆∥+

2C
1/4
g,2

γH

)
≤

4Υ
1/2
H

γH

(
Υ

1/2
H +

C
1/4
g,1

γ
1/2
H

)
χt(Ft − F ⋆)2 +

2
√
2Υ

1/2
H C

1/4
g,2

γH
χt(Ft − F ⋆)3/2

≤

(
4Υ

1/2
H

γH

(
Υ

1/2
H +

C
1/4
g,1

γ
1/2
H

)
χt +

γH
2ΥH

βt

)
(Ft − F ⋆)2 +

34Υ5
HCg,2

γ7H
· χ

4
t

β3
t

(Young’s inequality).(E.3)

Here, the second inequality is due to (D.6) and the following ΥH -Lipschitz continuity property of
∇F (x) (Nesterov, 2018):

1

2ΥH
∥∇Ft∥2 ≤ Ft − F ⋆ ≤ ΥH

2
∥xt − x⋆∥2. (E.4)

• Term 2: E[ᾱ2
tΥH(Ft − F ⋆)∥∆̄xt∥2 + ᾱ2

t (∇F T
t ∆̄xt)

2 | Ft−1].
Since ᾱt ≤ ηt, we bound this term by

E[ ᾱ2
tΥH(Ft − F ⋆)∥∆̄xt∥2 + ᾱ2

t (∇F T
t ∆̄xt)

2 | Ft−1] ≤ η2tE
[(
ΥH(Ft − F ⋆) + ∥∇Ft∥2

)
∥∆̄xt∥2 | Ft−1

]
(E.4)

≤ 3ΥHη2tE
[
(Ft − F ⋆)∥∆̄xt∥2 | Ft−1

]
≤ γH

2ΥH
(βt + χt)(Ft − F ⋆)2 +

9Υ3
H

2γH
η3tE

[
∥∆̄xt∥4 | Ft−1

]
,(E.5)

where the last inequality is by Young’s inequality.

• Term 3: E[ ᾱ3
tΥH∇F T

t ∆̄xt∥∆̄xt∥2 | Ft−1].
Similarly, we use Young’s inequality, apply (E.4), and have

E[ ᾱ3
tΥH∇F T

t ∆̄xt∥∆̄xt∥2 | Ft−1] ≤ η3tΥHE[∥∇Ft∥∥∆̄xt∥3 | Ft−1]

≤ 1

4
η3t ∥∇Ft∥4 +

3Υ
4/3
H

4
η3tE

[
∥∆̄xt∥4 | Ft−1

](E.4)
≤ Υ2

Hη3t (Ft − F ⋆)2 +
3Υ

4/3
H

4
η3tE

[
∥∆̄xt∥4 | Ft−1

]
.(E.6)

Substituting (E.2), (E.3), (E.5), and (E.6) into (E.1), we obtain

E[(Ft+1 − F ⋆)2 | Ft−1] ≤
(
1− 2γH

ΥH
βt +

γH
2ΥH

χt +
4Υ

1/2
H

γH

(
Υ

1/2
H +

C
1/4
g,1

γ
1/2
H

)
χt +Υ2

Hη3t

)
(Ft − F ⋆)2

+
34Υ5

HCg,2

γ7H
· χ

4
t

β3
t

+
6Υ3

H

γH
η3tE

[
∥∆̄xt∥4 | Ft−1

]
(by ηt ≤ 1).
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Following the analysis in (D.8), we apply Assumption 3.2 and have

E
[
∥∆̄xt∥4 | Ft−1

]
≤ 24

γ4H
E[∥ḡt∥4 | Ft−1] ≤

27

γ4H

(
E[∥ḡt −∇Ft∥4 | Ft−1] + ∥∇Ft∥4

)
(E.4)

≤
29Υ2

H

γ4H
(Ft − F ⋆)2 +

27Cg,1

γ4H
∥xt − x⋆∥4 + 27Cg,2

γ4H
(D.6)

≤
29Υ2

H

γ4H
(Ft − F ⋆)2 +

29Cg,1

γ6H
(Ft − F ⋆)2 +

27Cg,2

γ4H

=
29(Υ2

H + Cg,1/γ
2
H)

γ4H
(Ft − F ⋆)2 +

27Cg,2

γ4H
.

Combining the above two displays and taking full expectation, we obtain the recursion:

E[(Ft+1 − F ⋆)2]

≤

(
1− 2γH

ΥH
βt +

γH
2ΥH

χt +
4Υ

1/2
H

γH

(
Υ

1/2
H +

C
1/4
g,1

γ
1/2
H

)
χt +

212Υ3
H(Υ2

H + Cg,1/γ
2
H)

γ5H
η3t

)
E[(Ft − F ⋆)2]

+
34Υ5

HCg,2

γ7H

χ4
t

β3
t

+
210Υ3

HCg,2

γ5H
η3t .

We apply the above inequality recursively until (F0−F ⋆)2 and then apply Lemma B.4 to compute the
rate of E[(Ft − F ⋆)2]. We first verify the assumptions. Since χt = o(βt) by χ > β, we know

lim
i→∞

βi − ΥH
2γH

(
γH
2ΥH

χi +
4Υ

1/2
H

γH

(
Υ

1/2
H +

C
1/4
g,1

γ
1/2
H

)
χi +

212Υ3
H(Υ2

H+Cg,1/γ2
H)

γ5
H

η3i

)
βi

= 1.

Since β ∈ (0, 1), we have limi→∞ iβi = ∞ and (B.2) holds naturally. Furthermore, since limi→∞ i(1−
βi−1/βi) = −β and limi→∞ i(1 − χi−1/χi) = −χ, we obtain from Lemma B.1 that limi→∞ i(1 −
β4
i−1/β

4
i ) = −4β and limi→∞ i(1− χ4

i−1/χ
4
i ) = −4χ. Thus, we have

lim
i→∞

i

(
1−

χ4
i−1/β

4
i−1

χ4
i /β

4
i

)
= lim

i→∞
i

(
1−

χ4
i−1

χ4
i

+
χ4
i−1

χ4
i

{
1−

1/β4
i−1

1/β4
i

})
= 4(β − χ) < 0,

lim
i→∞

i

(
1−

η3i−1/βi−1

η3i /βi

)
= lim

i→∞
i

(
1−

η3i−1

η3i
+

η3i−1

η3i

{
1− 1/βi−1

1/βi

})
= −2β < 0.

This suggests that (B.1) also holds. Now, we apply Lemma B.4 and obtain

E
[
∥xt − x⋆∥4

](D.6)

≲
1

γ2H
E
[
(Ft − F ⋆)2

]
≲

1

γ2H
· ΥH

γH

(
Υ5

HCg,2

γ7H
· χ

4
t

β4
t

+
Υ3

HCg,2

γ5H
· η

3
t

βt

)
(E.7)

≲
Υ4

HCg,2

γ8H
β2
t +

Υ6
HCg,2

γ10H
· χ

4
t

β4
t

= O

(
β2
t +

χ4
t

β4
t

)
.

Part 2: Bound of E[∥Bt −B⋆∥4]. By the construction of Bt in (7), we have

E
[
∥Bt −B⋆∥4

]
≲ E

[∥∥∥1
t

t−1∑
i=0

(H̄i −∇2Fi)
∥∥∥4]+ E

[∥∥∥1
t

t−1∑
i=0

(∇2Fi −∇2F ⋆)
∥∥∥4]. (E.8)
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For the first term, we note that H̄i −∇2Fi is a martingale difference sequence and (14) implies

E
[ ∥∥H̄i −∇2Fi

∥∥4
F

]
≲ E

[ ∥∥H̄i −∇2Fi

∥∥4 ] (14)

≲ CH,1E
[
∥xt − x⋆∥4

]
+ CH,2.

Therefore, same as in (Chen et al., 2020b, (63)), we apply (Rio, 2008, Theorem 2.1) and obtain

E
[∥∥∥1

t

t−1∑
i=0

(H̄i −∇2Fi)
∥∥∥4] ≤ E

[∥∥∥1
t

t−1∑
i=0

(H̄i −∇2Fi)
∥∥∥4
F

]
≲

1

t4

[ t−1∑
i=0

(
E
[
∥H̄i −∇2Fi∥4F

])1/2]2
≲

1

t4

( t−1∑
i=0

C
1/2
H,1(E

[
∥xt − x⋆∥4

]
)1/2

)2
+

1

t4

( t−1∑
i=0

C
1/2
H,2

)2
(E.7)

≲
1

t2

(
Υ4

HCg,2CH,1

γ8H

(1
t

t−1∑
i=0

βi

)2
+

Υ6
HCg,2CH,1

γ10H

(1
t

t−1∑
i=0

χ2
i

β2
i

)2)
+

CH,2

t2
.

We only consider the case where χ ≤ 1.5β, otherwise χ2
t /β

2
t = o(βt) and all χ2

t /β
2
t terms in the fol-

lowing can be absorbed into βt. We note that

1

t

t−1∑
i=0

βi =
1

t
β0+

t−1∑
i=1

t−1∏
j=i+1

(
1− 1

j

)1
i
βi

(B.3)

≲
1

1− β
βt and

1

t

t−1∑
i=0

χ2
i

β2
i

(B.3)

≲
1

1− 2(χ− β)
· χ

2
t

β2
t

, (E.9)

where we are able to apply Lemma B.2 since the condition (B.2) is satisfied by β < 1 and χ ≤
1.5β ⇒ 2χ− 2β < 1. Thus, we combine the above two displays and have

1

t2

(
Υ4

HCg,2CH,1

γ8
H

(1
t

t−1∑
i=0

βi

)2
+

Υ6
HCg,2CH,1

γ10
H

(1
t

t−1∑
i=0

χ2
i

β2
i

)2)
= o

(
1

t2

)
and E

[∥∥∥1
t

t−1∑
i=0

(H̄i −∇2Fi)
∥∥∥4] ≲ CH,2

t2
.

(E.10)

For the second term on the right hand side in (E.8), the ΥL-Lipschitz continuity of ∇2F (x) leads to

E
[∥∥∥1

t

t−1∑
i=0

(∇2Fi −∇2F ⋆)
∥∥∥4] ≤ E

[(1
t

t−1∑
i=0

∥∇2Fi −∇2F ⋆∥
)4]

≤
Υ4

L

t4
E
[( t−1∑

i=0

∥xi − x⋆∥
)4]

≤
Υ4

L

t4

( t−1∑
i=0

(
E[∥xi − x⋆∥4]

)1/4)4
(by Hölder’s inequality)

(E.7)

≲
Υ4

LΥ
4
HCg,2

γ8H

(
1

t

t−1∑
i=0

β
1/2
i

)4

+
Υ4

LΥ
6
HCg,2

γ10H

(
1

t

t−1∑
i=0

χi

βt

)4

(E.9)

≲
Υ4

LΥ
4
HCg,2

γ8H
β2
t +

Υ4
LΥ

6
HCg,2

γ10H
· χ

4
t

β4
t

(by 1− β/2 > 1/2 and 1− (χ− β) > 1/2). (E.11)

Plugging (E.10) and (E.11) into (E.8), we have

E
[
∥Bt −B⋆∥4

]
≲

Υ4
LΥ

4
HCg,2

γ8H
β2
t +

Υ4
LΥ

6
HCg,2

γ10H
· χ

4
t

β4
t

= O

(
β2
t +

χ4
t

β4
t

)
. (E.12)

This completes the proof.
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E.2 Analysis of a dominant term in Ξ̂t

In this section, we focus on a dominant term of Ξ̂t and show that the dominate term converges to the
limiting covariance matrix Ξ⋆. We first introduce a decomposition of the iterate xt.

Lemma E.1. (Na and Mahoney, 2022, Lemma 5.1) The iterate sequence (6) can be decomposed as

xt+1 − x⋆ = I1,t + I2,t + I3,t, (E.13)

where

I1,t =
t∑

i=0

t∏
j=i+1

{I − φj(I − C⋆)}φiθ
i, (E.14)

I2,t =
t∑

i=0

t∏
j=i+1

{I − φj(I − C⋆)} (ᾱi − φi) ∆̄xi, (E.15)

I3,t =
t∏

i=0

{I − φi(I − C⋆)} (x0 − x⋆) +
t∑

i=0

t∏
j=i+1

{I − φj(I − C⋆)}φiδ
i, (E.16)

and

C⋆ = (I − E[B⋆S(ST (B⋆)2S)†STB⋆])τ , (E.17)

θi = ∆̄xi − E[∆̄xi | Fi−1] = −(I − C̃i)B
−1
i ḡi + (I − Ci)B

−1
i ∇Fi, (E.18)

δi = −(I − Ci)
{
(B⋆)−1ψi + {B−1

i − (B⋆)−1}∇Fi

}
+
(
Ci − C⋆

)
(xi − x⋆), (E.19)

ψi = ∇Fi −B⋆(xi − x⋆). (E.20)

Here, I1,t includes the summation of martingale difference sequence; I2,t characterizes the influ-
ence of the adaptive stepsize; and I3,t encompasses all remaining errors. Based on (E.13), we de-
compose the following matrix as

1

t

t∑
i=1

1

φi−1
(xi − x⋆)(xi − x⋆)T =

3∑
k=1

3∑
l=1

1

t

t−1∑
i=0

1

φi
Ik,iIl,i. (E.21)

We study the dominant term 1
t

∑t−1
i=0

1
φi
I1,iIT

1,i in this section and defer the analysis on the remaining
terms to Appendix E.3. The next lemma shows consistency of the dominant term and establishes the
convergence rate, with proof provided in Appendix E.2.1.

Lemma E.2. Suppose Assumptions 3.1 – 3.4 hold, the number of sketches satisfies τ ≥ log(γH/4ΥH)/ log ρ
with ρ = 1−γS , and the stepsize parameters satisfy β ∈ (0, 1), χ > β, and cβ, cχ > 0. Then, we have

E
[∥∥∥1

t

t−1∑
i=0

1

φi
I1,iIT

1,i − Ξ⋆
∥∥∥] ≲ {√βt + χt/βt, β ∈ (0, 0.5],

1/
√

tβt + χt/βt, β ∈ (0.5, 1).
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E.2.1 Proof of Lemma E.2

We define

C̃⋆
k,j = I −

(
B⋆Sk,j(S

T
k,j(B

⋆)2Sk,j)
†ST

k,jB
⋆
)

and C̃⋆
k =

τ∏
j=1

C̃⋆
k,j , (E.22)

where Sk,j is the same sketching matrix in C̃k,j at (B.5). It is easy to verify EC̃⋆
k = C⋆ with C⋆ defined

in (E.17). We also define

θ̃k = −(I − C̃⋆
k)(B

⋆)−1∇f(x⋆; ξk) and θ̂k = θk − θ̃k. (E.23)

Basically, θ̃k and θk share the same randomness but θ̃k is constructed at x⋆ instead of xk, which
means we use the iid copies {θ̃k}k to approximate the martingale difference sequence {θk}k. We de-
compose I1,i as

I1,i =
i∑

k=0

i∏
l=k+1

{I − φl(I − C⋆)}φkθ̃
k +

i∑
k=0

i∏
l=k+1

{I − φl(I − C⋆)}φkθ̂
k =: Ĩ1,i + Î1,i. (E.24)

Intuitively, as xi converges to x
⋆, Ĩ1,i should be a good approximation to I1,i and Î1,i should be neg-

ligible. The next two lemma provide bounds for Ĩ1,i and Î1,i, respectively. The proofs are provided in
Appendices E.2.2 and E.2.3.

Lemma E.3. Under the assumptions of Lemma E.2, we have

E
[∥∥∥1

t

t−1∑
i=0

1

φi
Ĩ1,iĨT

1,i − Ξ⋆
∥∥∥] ≲ {βt, β ∈ (0, 1/3],

1/
√

tβt, β ∈ (1/3, 1).

Lemma E.4. Under the assumptions of Lemma E.2, we have

E
[∥∥∥1

t

t−1∑
i=0

1

φi
Î1,iÎT

1,i

∥∥∥] ≤ 1

t

t−1∑
i=0

1

φi
E
[
∥Î1,i∥2

]
≲ βt +

χ2
t

β2
t

.

By the decomposition (E.24), we have

E
[∥∥∥1

t

t−1∑
i=0

1

φi
I1,iIT

1,i − Ξ⋆
∥∥∥] ≤ E

[∥∥∥1
t

t−1∑
i=0

1

φi
Ĩ1,iĨT

1,i − Ξ⋆
∥∥∥]

+ E
[∥∥∥1

t

t−1∑
i=0

1

φi
Î1,iÎT

1,i

∥∥∥]+ 2E
[∥∥∥1

t

t−1∑
i=0

1

φi
Ĩ1,iÎT

1,i

∥∥∥]. (E.25)

We apply Hölder’s inequality twice to the last term and obtain

E
[∥∥∥1

t

t−1∑
i=0

1

φi
Ĩ1,iÎT

1,i

∥∥∥] ≤ E
[
1

t

t−1∑
i=0

1

φi
∥Ĩ1,i∥∥Î1,i∥

]

≤ E

[√√√√1

t

t−1∑
i=0

1

φi
∥Ĩ1,i∥2

√√√√1

t

t−1∑
i=0

1

φi
∥Î1,i∥2

]
≤

√√√√1

t

t−1∑
i=0

1

φi
E∥Ĩ1,i∥2

√√√√1

t

t−1∑
i=0

1

φi
E∥Î1,i∥2. (E.26)

32



Given Lemmas E.3 and E.4, it suffices to bound 1
t

∑t−1
i=0

1
φi
E∥Ĩ1,i∥2. We have

E
[
∥Ĩ1,i∥2

] (E.24)
=

i∑
k1,k2=0

φk1φk2E
[
(θ̃k1)T

( i∏
l1=k1+1

{
I − φl1(I − C⋆)

})T( i∏
l2=k2+1

{
I − φl2(I − C⋆)

})
θ̃k2
]

=
i∑

k=0

φ2
kE
[∥∥∥ i∏

l=k+1

{
I − φl(I − C⋆)

}
θ̃k
∥∥∥2] ≤ i∑

k=0

φ2
k

i∏
l=k+1

∥∥I − φl(I − C⋆)
∥∥2E[∥θ̃k∥2]

≤
i∑

k=0

i∏
l=k+1

(
1− (1− ρ)τφl

)2
φ2
kE
[
∥θ̃k∥2

]
, (E.27)

where the second equality uses the fact that {θ̃k}k are mean zero and independent, and the last in-
equality uses the fact φt ≤ ηt ≤ 1 (cf. Appendix 4.2) and Lemma B.5(d). Note that φt ≤ 1 is not es-
sential; given φt → 0, we can apply Lemma B.4 to derive the same results without this condition. Next,
we bound the moment of ∥θ̃k∥. We note for m = 2, 4 and any k ≥ 0,

E
[
∥∇f(x⋆; ξk)∥m

]
≲ E

[
∥∇f(x⋆; ξk)−∇f(xk; ξk)∥m

]
+ E

[
∥∇f(xk; ξk)−∇Fk∥m

]
+ E

[
∥∇Fk −∇F ⋆∥m

]
≲ Υm

HE
[
∥xk − x⋆∥m

]
+ C

m/4
g,1 E

[
∥xk − x⋆∥m

]
+ C

m/4
g,2 +Υm

HE
[
∥xk − x⋆∥m

]
(Assumptions 3.2, 3.3)

≲ C
m/4
g,2 (E

[
∥xk − x⋆∥m

]
= o(1) by Lemma 4.2). (E.28)

Then, by (15) and Lemma B.5(c), we have for m = 2, 4

E
[
∥θ̃k∥m

] (E.23)

≤ E
[
∥I − C̃⋆∥m∥(B⋆)−1∥m∥∇f(x⋆; ξk)∥m

]
≤ 2m

γmH
E
[
∥∇f(x⋆; ξk)∥m

] (E.28)

≲
C

m/4
g,2

γmH
.

(E.29)
Plugging (E.29) into (E.27), we get

1

t

t−1∑
i=0

1

φi
E
[
∥Ĩ1,i∥2

]
≤ 1

t

t−1∑
i=0

1

φi

i∑
k=0

i∏
l=k+1

(1− (1− ρτ )φl)
2φ2

kE
[
∥θ̃k∥2

]
≲

C
1/2
g,2

γ2H
· 1
t

t−1∑
i=0

1

φi

t∑
k=0

i∏
l=k+1

(1− (1− ρτ )φl)
2φ2

k︸ ︷︷ ︸
−→0.5/(1−ρτ ) by Lemma B.2

≲
C

1/2
g,2

γ2H(1− ρτ )
, (E.30)

where the last inequality uses the fact that limt→∞
∑t−1

i=0 ai/t = a if limt→∞ at = a. Combining (E.26),
(E.30), and Lemma E.4 (particularly (E.40) in the proof), we derive

E
[∥∥∥1

t

t−1∑
i=0

1

φi
Ĩ1,iÎT

1,i

∥∥∥] ≲ C
1/4
g,2 C

1/2

θ̂

γH(1− ρτ )

(
1

(1− β)1/2

√
βt +

Υ
1/2
H 1{χ≤1.5β}

γ
1/2
H (1− 2(χ− β))1/2

· χt

βt

)

with a constant C
θ̂
> 0 defined later in (E.39). Finally, combining Lemma E.3 ((E.38) in the proof),
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Lemma E.4 ((E.40) in the proof), and (E.25), we have

E
[∥∥∥1

t

t−1∑
i=0

1

φi
I1,iIT

1,i − Ξ⋆
∥∥∥]

≲


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g,2 C
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θ̂
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√
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Υ
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1/4
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θ̂
1{χ≤1.5β}

γ
3/2
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βt
= O

(√
βt +

χt

βt

)
, β ∈ (0, 0.5),
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1/4
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1/2

θ̂
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max(∥Λ∥F , C1/2

g,2 /γ
2
H)

cβ(1− ρτ )3/2

)√
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Υ
1/2
H C

1/4
g,2 C
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θ̂
1{χ≤1.5β}

γ
3/2
H (1− ρτ )

· χt

βt
= O

(√
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χt
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)
, β = 0.5,

max(∥Λ∥F , C1/2
g,2 /γ

2
H)

(1− ρτ )3/2
· 1√

tβt

+
Υ

1/2
H C

1/4
g,2 C

1/2

θ̂
1{χ≤1.5β}

γ
3/2
H (1− ρτ )(1− 2(χ− β))1/2

· χt

βt
= O

(
1√
tβt

+
χt

βt

)
, β ∈ (0.5, 1),

(E.31)

where Λ = E[(I − C̃∗)Ω⋆(I − C̃∗)T ]. This completes the proof.

E.2.2 Proof of Lemma E.3

By the eigenvalue decomposition I − C⋆ = UΣUT with Σ = diag(σ1, . . . , σd) in (17), we have

Ĩ1,i =
i∑

k=0

i∏
l=k+1

{I − φl(I − C⋆)}φkθ̃
k = U

i∑
k=0

i∏
l=k+1

{I − φlΣ}φkU
T θ̃k. (E.32)

Let Q̃i = UT Ĩ1,i and Γ = UTΛU with Λ = E[(I− C̃∗)Ω⋆(I− C̃∗)T ]. Recalling the expression of Ξ⋆ in
(20), we get

E
[∥∥∥1

t

t−1∑
i=0

1

φi
Ĩ1,iĨT

1,i − Ξ⋆
∥∥∥] = E

[∥∥∥1
t
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i=0

1

φi
Q̃iQ̃T

i −Θ ◦ Γ
∥∥∥] ≤ E

[∥∥∥1
t

t−1∑
i=0

1

φi
Q̃iQ̃T

i −Θ ◦ Γ
∥∥∥
F

]

≤

√√√√E
[∥∥∥1

t

t−1∑
i=0

1

φi
Q̃iQ̃T

i −Θ ◦ Γ
∥∥∥2
F

]
(by Hölder’s inequality).

We perform bias-variance decomposition on this term:

E
[∥∥∥1

t

t−1∑
i=0

1

φi
Q̃iQ̃T

i −Θ ◦ Γ
∥∥∥2
F

]
=

d∑
p,q=1

E
[(1

t

t−1∑
i=0

1

φi
Q̃i,pQ̃i,q −Θp,qΓp,q

)2]
=: I + II, (E.33)

with

I =
d∑

p,q=1

{
E
[(1

t

t−1∑
i=0

1

φi
Q̃i,pQ̃i,q

)2]
−
(
E
[1
t
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i=0

1

φi
Q̃i,pQ̃i,q

])2}
(variance),

II =
d∑

p,q=1

(
E
[1
t

t−1∑
i=0

1

φi
Q̃i,pQ̃i,q

]
−Θp,qΓp,q

)2

(bias2),
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and Q̃i,p and Q̃i,q represent the p-th and q-th elements in Q̃i. We first look at II. By (E.32), we get

E
[1
t

t−1∑
i=0

1

φi
Q̃i,pQ̃i,q

]
=

1

t

t−1∑
i=0

1

φi

i∑
k1=0

i∑
k2=0

i∏
l1=k1+1

(1− σpφl1)·

i∏
l2=k2+1

(1− σqφl2)φk1φk2E
[(
UT θ̃k1 θ̃k

T
2 U
)
p,q

]
.

Given the definition of θ̃k in (E.23) and the independence among {θ̃k}k, it is observed that

E[UT θ̃k1 θ̃k
T
2 U ] = 0 for k1 ̸= k2 and E[UT θ̃kθ̃kTU ] = Γ.

Thus, combining the above two displays leads to

E
[1
t

t−1∑
i=0

1

φi
Q̃i,pQ̃i,q

]
=

1

t

t−1∑
i=0

1

φi

i∑
k=0

i∏
l=k+1

(1− σpφl)(1− σqφl)φ
2
kΓp,q.

We plug the above display into the term II and apply Lemma B.3 to bound it. For β ∈ (0.5, 1), we have

|II| ≤
d∑

p,q=1

(
1

t

t−1∑
i=0

∣∣∣ 1
φi

i∑
k=0

i∏
l=k+1

(1− σpφl) (1− σqφl)φ
2
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· 1
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1
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(E.9)

≲
d∑

p,q=1

( β

(σp + σq)2
· 1

1− (1− β)
· 1

tφt

)2
Γ2
p,q

≲
∥Γ∥2F

(1− ρτ )4
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t2φ2
t

≲
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t

(by Lemma B.5(d) and χt = o(βt)). (E.34)

Applying Lemma B.3 for β ∈ (0, 0.5) and β = 0.5, we similarly obtain

|II| ≲ ∥Λ∥2Fβ2
t for β ∈ (0, 0.5) and |II| ≲

(
1 +

β/c2β
2(1− ρτ )2

)2
∥Λ∥2Fβ2

t for β = 0.5. (E.35)

Now we deal with the term I. By (E.32), we expand I as

I =

d∑
p,q=1

1

t2
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i1,i2=0

1

φi1

1

φi2

i1∑
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i2∑
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p,q
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2 U
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)
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]
E
[(
UT θ̃k2 θ̃k

′T
2 U

)
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]}
.

It is noteworthy that the term in the curly braces is nonzero only when the indices k1, k
′
1, k2, k

′
2 are pair-

wise identical. Thus, we decompose I into four terms I1, I2, I3, I4 by classifying the indices.

• Term 1: k1 = k′1 = k2 = k′2.
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Summing over all the indices under this case, we get

|I1| =
∑
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1
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U
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]
.

Here, the equality holds because 1− σkφt > 0 for any 1 ≤ k ≤ d and t ≥ 0 following the same dis-
cussion as in (E.27). By (E.29), we know

E
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U
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]
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]
≲
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Due to the symmetry between the indices i1 and i2, |I1| can be further bounded by
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• Term 2: k1 = k′1, k2 = k′2, k1 ̸= k2.
We note that
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This indicates that I2 = 0.

• Term 3: k1 = k2, k
′
1 = k′2, k1 ̸= k′1.

In this case, it is observed that
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Thus, we have
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Since k1 ̸= k′1, we have
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By the symmetry of the indices i1 and i2, we can further bound |I3| by
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• Term 4: k1 = k′2, k2 = k′1, k1 ̸= k2.
In this case, we have
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The analysis of I4 is almost identical to I3, only with the expectation term being replaced by∑
p,q

E
[(
UT θ̃k1 θ̃k

T
1 U
)
p,q

(
UT θ̃k2 θ̃k

T
2 U
)
p,q

]
=
∑
p,q

Γ2
p,q = ∥Γ∥2F = ∥Λ∥2F when k1 ̸= k2.

Therefore, we conclude that

|I4| ≲
∥Λ∥2F

(1− ρτ )3
· 1

tβt
.

Combining the analyses of four terms, we obtain

|I| ≤
4∑

i=1

|Ii| ≲
max(∥Λ∥2F , Cg,2/γ

4
H)

(1− ρτ )3
· 1

tβt
. (E.37)

Plugging (E.34), (E.35), and (E.37) into to (E.33), we have

E
[∥∥∥1

t

t−1∑
i=0

1

φi
Ĩ1,iĨT

1,i − Ξ⋆
∥∥∥] ≲



∥Λ∥Fβt = O(βt), β ∈ (0, 1/3),

max

(
∥Λ∥F ,

max(∥Λ∥F , C1/2
g,2 /γ

2
H)

c
3/2
β (1− ρτ )3/2

)
βt = O(βt), β = 1/3,

max(∥Λ∥F , C1/2
g,2 /γ

2
H)

(1− ρτ )3/2
· 1√

tβt
= O(1/

√
tβt), β ∈ (1/3, 1).

(E.38)

We complete the proof.
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E.2.3 Proof of Lemma E.4

We present the following lemma to bound θ̂k defined in (E.23), with proof deferred to Appendix E.2.4.

Lemma E.5. Under the assumptions of Lemma E.2, we have

E
[
∥θ̂k∥2

]
≲

Υ2
H

γ2H
E
[
∥xk − x⋆∥2

]
+

τ2ΥSC
1/2
g,2

γ4H
E
[
∥Bk −B⋆∥2

]
.

This lemma indicates that the difference between the martingale difference θk and its approxima-
tion θ̃k vanishes. Combining Lemma E.5 with (E.7) and (E.12) in the proof of Lemma 4.2, we get

E
[
∥θ̂k∥2

]
≲ C

θ̂

(
βk +

ΥH

γH
·
χ2
k

β2
k

)
with C

θ̂
=

Υ2
HC

1/2
g,2

γ6H
max

(
Υ2

H ,
τ2ΥSΥ

2
LC

1/2
g,2

γ2H

)
. (E.39)

Recall the expression of Î1,i in (E.24). Since {θ̂k}k is a martingale difference sequence, we follow the
analysis in (E.27) and (E.30), and obtain

1

t

t−1∑
i=0

1

φi
E
[
∥Î1,i∥2

]
≤ 1

t

t−1∑
i=0

1

φi

i∑
k=0

i∏
l=k+1

(1− (1− ρτ )φl)
2φ2

kE
[
∥θ̂k∥2

]
≲ C

θ̂
· 1
t

t−1∑
i=0

1

φi

i∑
k=0

i∏
l=k+1

(1− (1− ρτ )φl)
2φ2

kβk︸ ︷︷ ︸
≲βi/(1−ρτ ) by Lemma B.2

+
ΥHC

θ̂

γH
· 1
t

t−1∑
i=0

1

φi

i∑
k=0

i∏
l=k+1

(1− (1− ρτ )φl)
2φ

2
kχ

2
k

β2
k︸ ︷︷ ︸

≲(χ2
i /β

2
i )/(1−ρτ ) by Lemma B.2

(E.9)

≲
C
θ̂

(1− ρτ )(1− β)
βt +

ΥHC
θ̂
1{χ≤1.5β}

γH(1− ρτ )(1− 2(χ− β))
· χ

2
t

β2
t

= O

(
βt +

χ2
t

β2
t

)
. (E.40)

We complete the proof.

E.2.4 Proof of Lemma E.5

We expand θ̂k based on its definition in (E.23) as

θ̂k = θk − θ̃k = (I − Ck)B
−1
k ∇Fk − (I − C̃k)B

−1
k ∇f(xk; ξk) + (I − C̃⋆

k)(B
⋆)−1∇f(x⋆; ξk).

Then, we can bound ∥θ̂k∥2 as

∥θ̂k∥2 ≲ ∥I − Ck∥2∥B−1
k ∥2∥∇Fk∥2 + ∥I − C̃k∥2∥B−1

k ∥2∥∇f(xk; ξk)−∇f(x⋆; ξk)∥2

+ ∥(I − C̃k)B
−1
k − (1− C̃⋆

k)(B
⋆)−1∥2∥∇f(x⋆; ξk)∥2 =: I + II + III.

For the first two terms, by Assumption 3.3 and Lemma B.5(c), we get

E[I] ≲
Υ2

H

γ2H
E
[
∥xk − x⋆∥2

]
and E[II] ≲

Υ2
H

γ2H
E
[
∥xk − x⋆∥2

]
. (E.41)

Regarding the term III, we have

∥(I − C̃k)B
−1
k − (1− C̃⋆

k)(B
⋆)−1∥2 ≤ ∥I − C̃k∥2∥B−1

k ∥2∥(B⋆)−1∥2∥Bk −B⋆∥2

+ ∥(B⋆)−1∥2∥C̃k − C̃⋆
k∥2 ≲

1

γ4H
∥Bk −B⋆∥2 + 1

γ2H
∥C̃k − C̃⋆

k∥2.
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Then, we apply the tower property of conditional expectation to bound E[III] by first conditioning
on Fk−1, and have

E[III] ≲ E
[
E
[( 1

γ4H
∥Bk −B⋆∥2 + 1

γ2H
∥C̃k − C̃⋆

k∥2
)
∥∇f(x⋆; ξk)∥2 | Fk−1

]]
=

1

γ4H
E
[
∥Bk −B⋆∥2E

[
∥∇f(x⋆; ξk)∥2 | Fk−1

]]
+

1

γ2H
E
[
E
[
∥C̃k − C̃⋆

k∥2 | Fk−1

]
E
[
∥∇f(x⋆; ξk)∥2 | Fk−1

]]
(E.28)

≲
C

1/2
g,2

γ4H
E
[
∥Bk −B⋆∥2

]
+

C
1/2
g,2

γ2H
E
[
∥C̃k − C̃⋆

k∥2
]
. (E.42)

Here, the second equality is due to σ(∥Bk −B⋆∥) ∈ Fk−1 and the independence between ξk and the
sketching matrices {Sk,j}τj=0. Plugging in the definition of C̃k (B.5) and C̃⋆

k (E.22), we have

∥C̃k − C̃⋆
k∥ =

∥∥∥ τ−1∏
j=0

C̃k,j −
τ−1∏
j=0

C̃⋆
k,j

∥∥∥ ≤
∥∥∥ τ−2∏

j=0

C̃k,j −
τ−2∏
j=0

C̃⋆
k,j

∥∥∥ · ∥C⋆
k,τ−1∥+

∥∥∥ τ−2∏
j=0

C̃k,j

∥∥∥ · ∥C̃k,τ−1 − C̃⋆
k,τ−1∥

≤ · · · ≤
τ−1∑
j=0

∥∥∥C̃k,j − C̃⋆
k,j

∥∥∥ (by ∥C⋆
k,τ−1∥ ≤ 1 and ∥C̃k,j∥ ≤ 1).

Applying (Na and Mahoney, 2022, Lemma 5.2) and Assumption 3.4, we obtain

E
[
∥C̃k − C̃⋆

k∥2 | Fk−1

]
≤ 4∥Bk −B⋆∥2

γ2H
E[(

τ−1∑
j=0

∥Sk,j∥∥S†
k,j∥)

2] ≲
τ2ΥS

γ2H
∥Bk −B⋆∥2.

Combining the above display to (E.42), we get

E[III] ≲
τ2ΥSC

1/2
g,2

γ4H
E
[
∥Bk −B⋆∥2

]
. (E.43)

Combining (E.41) and (E.43) completes the proof.

E.3 Proof of Theorem 4.3

The weighted sample covariance matrix Ξ̂t can be decomposed as

Ξ̂t =
1

t

t∑
i=1

1

φi−1
(xi − x⋆)(xi − x⋆)T +

1

t

t∑
i=1

1

φi−1
(x̄t − x⋆)(x̄t − x⋆)T

− 1

t

t∑
i=1

1

φi−1
(xi − x⋆)(x̄t − x⋆)T − 1

t

t∑
i=1

1

φi−1
(x̄t − x⋆)(xi − x⋆)T . (E.44)

The next two lemmas show that 1
t

∑t
i=1

1
φi−1

(xi−x⋆)(xi−x⋆)T converges to Ξ⋆, and the remaining
terms are negligible as x̄t converges to x

⋆. The proofs are in Appendices E.3.1 and E.3.2.
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Lemma E.6. Suppose Assumptions 3.1 – 3.4 hold, the number of sketches satisfies τ ≥ log(γH/4ΥH)/ log ρ
with ρ = 1− γS , and the stepsize parameters satisfy β ∈ (0, 1), χ > 1.5β, and cβ, cχ > 0. Then, we
have

E
[∥∥∥1

t

t∑
i=1

1

φi−1
(xi − x⋆)(xi − x⋆)T − Ξ⋆

∥∥∥] ≲ {√βt + χt/β
1.5
t , β ∈ (0, 0.5],

1/
√

tβt + χt/β
1.5
t , β ∈ (0.5, 1),

(E.45)

and
1

t

t−1∑
i=0

1

φi−1
E
[
∥xi − x⋆∥2

]
= O(1). (E.46)

Lemma E.7. Suppose Assumptions 3.1 – 3.4 hold, the number of sketches satisfies τ ≥ log(γH/4ΥH)/ log ρ
with ρ = 1− γS , and the stepsize parameters satisfy β ∈ (0, 1), χ > 1.5β, and cβ, cχ > 0. Then, we
have

E
[∥∥∥1

t

t∑
i=1

1

φi−1
(x̄t−x⋆)(x̄t−x⋆)T

∥∥∥] ≤ 1

t

t−1∑
i=0

1

φi−1
E
[
∥x̄t−x⋆∥2

]
≲

{
βt + χ2

t /β
3
t , β ∈ (0, 0.5],

1/tβt + χ2
t /β

3
t , β ∈ (0.5, 1).

By the decomposition (E.44), we follow the derivations in (E.25) and (E.26) and obtain

E
[
∥Ξ̂t − Ξ⋆∥

]
≤ E

[∥∥∥1
t

t∑
i=1

1

φi−1
(xi − x⋆)(xi − x⋆)T − Ξ⋆

∥∥∥]+ E
[∥∥∥1

t

t∑
i=1

1

φi−1
(x̄t − x⋆)(x̄t − x⋆)T

∥∥∥]

+ 2

√√√√1

t

t∑
i=1

1

φi−1
E
[
∥xi − x⋆∥2

]√√√√1

t

t∑
i=1

1

φi−1
E
[
∥x̄t − x⋆∥2

]
.

Plugging (E.50) and (E.51) in the proof of Lemma E.6 and (E.60) in the proof of Lemma E.7 into
the above display, we obtain

E
[
∥Ξ̂t − Ξ⋆∥

]

≲



C
1/4
g,2

γH(1− ρτ )
max

(
C

1/2

θ̂
,

C
1/2
δ

(1− ρτ )1/2

)√
βt +

C
1/2
g,2 1{χ≤2β}

γ2
H(1− ρτ )3/2

√
χ2
t

β3
t

= O

(√
βt +

χt

β1.5
t

)
, β ∈ (0, 0.5),

max

 C
1/4
g,2

γH(1− ρτ )
max

(
C

1/2

θ̂
,

C
1/2
δ

(1− ρτ )1/2

)
,
max(∥Λ∥F , C

1/2
g,2 /γ2

H)

cβ(1− ρτ )3/2

√βt +
C

1/2
g,2 1{χ≤2β}

γ2
H(1− ρτ )3/2

√
χ2
t

β3
t

= O

(√
βt +

χt

β1.5
t

)
, β = 0.5,

max(∥Λ∥F , C
1/2
g,2 /γ2

H)

(1− ρτ )3/2
·

1
√
tβt

+
C

1/2
g,2 1{χ≤β+0.5}

γ2
H(1− ρτ )3/2

√
χ2
t

β3
t

= O

(
1

√
tβt

+
χt

β1.5
t

)
, β ∈ (0.5, 1),

with constants C
θ̂
> 0 defined in (E.39) and Cδ > 0 later defined in (E.58). This completes the proof.

E.3.1 Proof of Lemma E.6

Recalling the decomposition (E.21), we have proved the consistency of the dominant term 1
t

∑t−1
i=0

1
φi
I1,iIT

1,i

in Appendix E.2. The next two lemmas suggest that the terms involving {I2,i}i and {I3,i}i are higher
order errors, the proofs of which are deferred to Appendices E.3.3 and E.3.4.

Lemma E.8. Suppose the assumptions in Lemma E.6 hold, we have

E
[∥∥∥1

t

t−1∑
i=0

1

φi
I2,iIT

2,i

∥∥∥] ≤ 1

t

t−1∑
i=0

1

φi
E
[
∥I2,i∥2

]
= O(χ2

t /β
3
t ) · 1{χ<1.5β+0.5} + o(βt) · 1{χ≥1.5β+0.5}.
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Lemma E.9. Suppose the assumptions in Lemma E.6 hold, we have

E
[∥∥∥1

t

t−1∑
i=0

1

φi
I3,iIT

3,i

∥∥∥] ≤ 1

t

t−1∑
i=0

1

φi
E
[
∥I3,i∥2

]
≲ βt.

With the above two lemmas, we separate the proof Lemma E.6 by two parts.

Part 1: Proof of (E.45). By the decomposition (E.21), we follow (E.25) and (E.26) and have

E
[∥∥∥1

t

t∑
i=1

1

φi−1
(xi − x⋆)(xi − x⋆)T − Ξ⋆

∥∥∥]

≤ E
[∥∥∥1

t

t−1∑
i=0

1

φi
I1,iIT

1,i − Ξ⋆
∥∥∥]+ E

[∥∥∥1
t

t−1∑
i=0

1

φi
I2,iIT

2,i

∥∥∥]+ E
[∥∥∥1

t

t−1∑
i=0

1

φi
I3,iIT

3,i

∥∥∥]

+ 2
∑

1≤r<s≤3

√√√√1

t

t−1∑
i=0

1

φt
E
[
∥Ir,t∥2

]√√√√1

t

t−1∑
i=0

1

φt
E
[
∥Is,i∥2

]
. (E.47)

Given Lemmas E.2, E.8, and E.9, it is sufficient to establish the bound for 1
t

∑t−1
i=0

1
φi
E
[
∥I1,i∥2

]
. We

first bound the moment for ∥θk∥. Based on its definition (E.18), we have

θk = −(I − C̃k)B
−1
k (ḡk −∇Fk) + (C̃k − Ck)B

−1
k ∇Fk.

Furthermore, by ∥C̃k∥ ≤ 1, ∥Ck∥ ≤ 1, and (15), we get

E
[
∥θk∥2

]
≲

1

γ2H
E
[
∥ḡk −∇Fk∥2

]
+

1

γ2H
E
[
∥∇Fk∥2

]
≤

C
1/2
g,1

γ2H
E
[
∥xk − x⋆∥2

]
+

C
1/2
g,2

γ2H
+

Υ2
H

γ2H
E
[
∥xk − x⋆∥2

]
(by Assumptions 3.2 and 3.3)

≲
C

1/2
g,2

γ2H
(E
[
∥xk − x⋆∥2

]
= o(1) by Lemma 4.2). (E.48)

Since θk is a martingale difference sequence, we follow (E.40) and get

1

t

t−1∑
i=0

1

φi
E
[
∥I1,i∥2

]
≤ 1

t

t−1∑
i=0

1

φi

i∑
k=0

i∏
l=k+1

(1− (1− ρτ )φl)
2φ2

kE
[
∥θk∥2

]
≲

C
1/2
g,2

γ2H

1

t

t−1∑
i=0

1

φi

t∑
k=0

i∏
l=k+1

(1− (1− ρτ )φl)
2φ2

k︸ ︷︷ ︸
→0.5/(1−ρτ ) by Lemma B.2

≲
C

1/2
g,2

γ2H(1− ρτ )
. (E.49)

Combining the above display, Lemma E.2 ((E.31) in the proof), Lemma E.8 ((E.61) in the proof),
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and Lemma E.9 ((E.62) in the proof), and plugging them into (E.47), we get

E
[∥∥∥1

t

t∑
i=1

1

φi−1
(xi − x⋆)(xi − x⋆)T − Ξ⋆

∥∥∥]

≲



C
1/4
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max
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C
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θ̂
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C
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δ

(1− ρτ )1/2

)√
βt +

C
1/2
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γ2
H(1− ρτ )3/2

√
χ2
t

β3
t

= O

(√
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χt

β1.5
t

)
, β ∈ (0, 0.5),

max

 C
1/4
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γH(1− ρτ )
max

(
C

1/2

θ̂
,

C
1/2
δ

(1− ρτ )1/2

)
,
max(∥Λ∥F , C

1/2
g,2 /γ2

H)

cβ(1− ρτ )3/2

√βt +
C

1/2
g,2 1{χ≤2β}

γ2
H(1− ρτ )3/2

√
χ2
t

β3
t

= O

(√
βt +

χt

β1.5
t

)
, β = 0.5,

max(∥Λ∥F , C
1/2
g,2 /γ2

H)

(1− ρτ )3/2
·

1
√
tβt

+
C

1/2
g,2 1{χ≤β+0.5}

γ2
H(1− ρτ )3/2

√
χ2
t

β3
t

= O

(
1

√
tβt

+
χt

β1.5
t

)
, β ∈ (0.5, 1),

(E.50)

where constants C
θ̂
> 0 is defined in (E.39) and Cδ > 0 will be later defined in (E.58). Here, we also

use the observation that χ2
t /β

3
t = o(βt) when χ > 2β and β ∈ (0, 0.5], and χ2

t /β
3
t = o(1/tβt) when

χ > β + 0.5 and β ∈ (0.5, 1).

Part 2: Proof of (E.46). By the decomposition (E.21), we have

1

t

t−1∑
i=0

1

φi−1
E
[
∥xi − x⋆∥2

]
≲

3∑
k=1

1

t

t−1∑
i=0

1

φi
E
[
∥Ik,i∥2

]
≲

C
1/2
g,2

γ2H(1− ρτ )
, (E.51)

where the last inequality follows from (E.49), and Lemmas E.8 and E.9. We complete the proof.

E.3.2 Proof of Lemma E.7

By (E.13), we decompose x̄t − x⋆ as

x̄t − x⋆ =
1

t

t−1∑
i=0

I1,i +
1

t

t−1∑
i=0

I2,i +
1

t

t−1∑
i=0

I3,i =: Ī1,t + Ī2,t + Ī3,t. (E.52)

We expand Ī1,t by plugging in (E.14) and exchange the indices. Then, we obtain

Ī1,t =
1

t

t−1∑
i=0

i∑
k=0

i∏
l=k+1

{I − φl(I − C⋆)}φkθ
k =

1

t

t−1∑
k=0

t−1∑
i=k

i∏
l=k+1

{I − φl(I − C⋆)}φkθ
k.

Since θk is a martingale difference sequence, the interaction terms in E
[
∥Ī1,t∥2

]
are vanished. Thus,

we have

E
[
∥Ī1,t∥2

]
=

1

t2

t−1∑
k=0

φ2
kE
[∥∥∥ t−1∑

i=k

i∏
l=k+1

{I − φl(I − C⋆)}θk
∥∥∥2]

≤ 1

t2

t−1∑
k=0

( t−1∑
i=k

i∏
l=k+1

(1− (1− ρτ )φl)
)2

φ2
kE
[
∥θk∥2

]
=: (#) (by Lemma B.5(d)).
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We rewrite the above display by exchanging the indices, and obtain
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1
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2φ2

kE
[
∥θk∥2

]
,

where the last inequality comes from the symmetry between the indices i1 and i2. We plug in (E.48)
and get

E
[
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]
≲

C
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g,2

γ2H
· 1
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/(1−ρτ ) by Lemma B.2

≲
C

1/2
g,2

γ2H(1− ρτ )
· 1

t2

t−1∑
i1=0

i1∑
i2=0

i1∏
l1=i2+1

(1− (1− ρτ )φl1)φi2︸ ︷︷ ︸
−→1/(1−ρτ ) by Lemma B.2

≲
C

1/2
g,2

γ2H(1− ρτ )2
· 1
t
. (E.53)

For the term Ī2,t, we plug in (E.15) and get

Ī2,t =
1

t

t−1∑
i=0

i∑
k=0

i∏
l=k+1

{I − φl(I − C⋆)}(ᾱk − φk)∆̄xk.

Furthermore, by Lemma B.5(d) and the fact that |ᾱk − φk| ≤ χk/2, we know

E
[
∥Ī2,t∥2

]
≲ E
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t
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(by Hölder’s inequality). (E.54)

Using ∥C̃k∥ ≤ 1 and (15), we bound E
[
∥∆̄xk∥2

]
as

E
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Consequently, we obtain
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E
[
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= o(β2

t ) · 1{χ≥β+1}.

Here, we use the fact that χ ≥ β+1 > 2β ⇒ χt/βt = o(βt). For the term Ī3,t, (E.16) gives us the fol-
lowing expansion
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Similar to (E.54), by Hölder’s inequality, we have
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Next, we bound the rate of E
[
∥δk∥2

]
. By the definition of δk in (E.19) and ψk in (E.20), we have
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The second inequality is due to 1) ∥Ck−C⋆∥ ≤ τΥ
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S ∥Bk−B⋆∥/γH (Na and Mahoney, 2022, Lemma

5.2), the ΥL-Lipschitz continuity of ∇F 2(x), and (15). Thus, we take expectation and obtain
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where the last inequality follows from Lemma 4.2 (particularly (E.7) and (E.12) in the proof) and
the observation χ > 1.5β ⇒ χ4

t /β
4
t = o(β2

t ). We plug (E.58) into (E.57), apply Lemma B.2, and get

E
[
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We recall the fact that 1
t
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1
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≲ 1/βt in (E.36), combine (E.52), (E.53), (E.56), and (E.59) to-

gether, and obtain
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Here follows the same discussion as in (E.50). This completes the proof.

E.3.3 Proof of Lemma E.8

Based on the definition of I2,i in (E.15), we apply Lemma B.5(d) and the fact that |ᾱk−φk| ≤ χk/2,
then we have
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With the above display, we obtain
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This completes the proof.
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E.3.4 Proof of Lemma E.9

Given the expression of I3,i in (E.16), we apply Lemma B.5(d) and have
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where the last inequality is due to Hölder’s inequality. We plugging in (E.58), apply Lemma B.2,
and get
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This completes the proof.

F Additional Experiment Results

F.1 Regression problems

We follow the experiment settings in Section 5.1 and 5.2 and provide a comprehensive comparison of
three estimators: batch-means estimator Ξ̄t based on ASGD, and plug-in estimator Ξ̃t and weighted
sample covariance matrix Ξ̂t based on (sketched) Newton method.

The empirical coverage rates of confidence intervals across varying d, r, and τ are summarized in
Table 4-7. The results align with the observations from Section 5.1 and 5.2: confidence intervals
based on Ξ̂t achieve approximately 95% coverage in most cases, while those based on Ξ̄t often
fall below the target confidence level. The bias in Ξ̃t significantly impacts its performance in
statistical inference. Comparing the tables, we note that the coverage rate for Ξ̄t is lower in logistic
regression than in linear regression, whereas no significant difference is observed between the two
regression types for Newton methods. This suggests that Newton methods are generally more
robust. Additionally, the coverage rates for Ξ̃t are lower for the Equi-correlation Σa compared to
Topelitz Σa, indicating that the Equi-correlation Σa problem is more challenging. Despite this, the
performance of Ξ̂t remains stable across all settings.

F.2 CUTEst problems

The experimental setup is described in Section 5.3. The trajectories of the limiting covariance
estimation error are presented in Figure 3. The results indicate that the estimation error of Ξ̂t
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Toeplitz Σa Dim
ASGD

Sketched Newton
τ = ∞ τ = 10 τ = 20 τ = 40

Ξ̄t Ξ̃t Ξ̂t Ξ̃t Ξ̂t Ξ̃t Ξ̂t Ξ̃t Ξ̂t

r = 0.4

20 88.50 95.50 96.00 88.00 94.50 86.00 92.50 92.50 94.50
40 89.00 96.00 96.50 92.50 96.50 90.50 94.50 90.00 94.50
60 89.50 95.00 95.00 84.50 92.50 88.50 94.00 88.50 95.50
100 91.50 100.0 100.0 89.00 94.00 90.50 95.50 91.50 95.00

r = 0.5

20 90.00 96.00 96.50 89.50 95.50 94.00 97.00 90.50 96.00
40 88.50 94.50 94.50 94.00 97.00 89.00 96.00 90.00 96.50
60 91.00 96.00 96.00 91.00 97.00 85.00 97.00 87.00 93.50
100 90.50 100.0 100.0 92.50 97.50 86.50 94.50 88.50 93.50

r = 0.6

20 88.50 89.50 90.00 90.50 96.50 92.50 94.50 91.50 95.00
40 91.00 95.00 95.00 88.50 98.00 83.00 92.00 88.00 95.50
60 87.50 95.00 94.50 86.50 95.50 85.50 95.00 87.50 94.50
100 91.50 100.0 100.0 93.50 99.00 97.00 99.50 95.00 98.50

Table 4: The empirical coverage rate (%) for linear regression problems with Toeplitz matrix Σa

(with various r) at confidence level 95%.

Equi-corr Σa Dim
ASGD

Sketched Newton
τ = ∞ τ = 10 τ = 20 τ = 40

Ξ̄t Ξ̃t Ξ̂t Ξ̃t Ξ̂t Ξ̃t Ξ̂t Ξ̃t Ξ̂t

r = 0.1

20 93.50 95.50 95.00 84.50 94.00 90.00 95.50 91.50 95.50
40 89.00 98.00 97.00 76.50 94.50 79.50 94.00 83.50 95.50
60 87.00 93.00 93.00 73.00 94.50 76.50 94.50 76.50 94.50
100 91.50 100.0 100.0 67.50 95.50 71.50 97.00 68.50 91.00

r = 0.2

20 91.50 96.00 96.50 82.50 94.50 84.00 96.00 89.50 96.00
40 88.50 98.00 98.50 71.00 92.50 74.50 94.00 79.50 98.00
60 86.00 97.00 96.00 70.00 96.00 75.00 94.50 77.00 96.00
100 83.50 100.0 100.0 71.00 95.50 70.00 96.00 68.50 93.50

r = 0.3

20 86.50 95.50 96.00 82.00 97.00 85.00 95.00 95.00 97.00
40 90.50 98.50 98.00 75.00 95.50 74.00 94.50 75.00 94.00
60 90.50 93.00 93.50 77.50 98.00 76.50 95.00 80.50 97.50
100 87.50 100.0 100.0 83.00 97.00 74.00 94.50 73.50 92.50

Table 5: The empirical coverage rate (%) for linear regression problems with Equi-correlation matrix
Σa (with various r) at confidence level 95%.
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Toeplitz Σa Dim
ASGD

Sketched Newton
τ = ∞ τ = 10 τ = 20 τ = 40

Ξ̄t Ξ̃t Ξ̂t Ξ̃t Ξ̂t Ξ̃t Ξ̂t Ξ̃t Ξ̂t

r = 0.4

20 81.00 94.50 94.00 92.00 96.50 95.00 95.50 95.50 97.50
40 84.50 93.50 93.00 92.00 95.00 90.50 95.50 86.50 91.50
60 87.50 95.50 95.50 92.50 95.50 91.50 94.00 94.50 97.00
100 84.00 96.50 96.00 92.00 97.00 91.00 93.50 92.00 95.50

r = 0.5

20 85.50 95.00 95.00 90.50 96.00 94.50 97.00 95.00 96.50
40 85.50 93.50 93.50 89.50 96.00 93.00 95.50 90.00 94.00
60 88.00 94.50 94.00 93.00 95.50 87.50 93.50 91.00 96.00
100 85.00 93.00 93.00 93.00 96.00 89.00 93.50 92.00 95.50

r = 0.6

20 84.50 94.50 94.50 93.00 98.00 89.50 92.50 96.00 97.00
40 87.50 95.00 95.00 90.50 94.00 91.00 95.00 91.00 95.50
60 92.00 94.50 95.00 86.50 93.50 89.00 93.00 93.50 96.00
100 83.50 97.50 97.50 86.00 92.00 87.00 92.00 89.00 94.00

Table 6: The empirical coverage rate (%) for logistic regression problems with Toeplitz matrix Σa

(with various r) at confidence level 95%.

Equi-corr Σa Dim
ASGD

Sketched Newton
τ = ∞ τ = 10 τ = 20 τ = 40

Ξ̄t Ξ̃t Ξ̂t Ξ̃t Ξ̂t Ξ̃t Ξ̂t Ξ̃t Ξ̂t

r = 0.1

20 89.00 93.50 93.50 88.50 95.50 92.50 95.00 95.00 95.00
40 83.50 97.50 97.50 85.00 97.50 85.50 94.50 89.00 93.50
60 84.00 96.00 97.00 77.00 93.00 81.00 95.50 82.50 95.50
100 85.50 92.50 91.50 82.00 95.00 81.00 94.50 81.50 93.50

r = 0.2

20 87.50 96.50 96.00 85.50 96.00 89.00 95.00 92.50 96.50
40 86.00 96.00 95.00 81.50 92.50 86.50 97.00 94.50 95.50
60 85.00 93.50 93.50 79.00 94.00 80.00 97.50 79.00 95.50
100 76.00 96.50 96.00 74.00 92.50 77.00 92.50 73.00 94.50

r = 0.3

20 90.50 93.00 93.50 85.50 93.00 87.50 93.50 95.00 96.50
40 86.00 95.00 94.50 81.00 94.00 82.00 93.50 86.00 93.50
60 82.00 94.00 94.50 83.50 95.50 88.00 98.00 82.50 98.00
100 62.00 92.00 90.50 77.00 96.00 72.50 97.00 72.00 95.50

Table 7: The empirical coverage rate (%) for logistic regression problems with Equi-correlation
matrix Σa (with various r) at confidence level 95%.
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decreases to small values across all settings, highlighting its effectiveness in constrained optimization.
While Ξ̃t demonstrates faster convergence, its error stabilizes at a constant value when bias is
significant.

(a) HS48

(b) HS78

(c) HS7

(d) MARATOS

Figure 3: Covariance estimation error for CUTEst problems. Each row represents a problem,
with the four figures in each row corresponding to different noise levels. Each figure displays the
estimation error trajectory for the plug-in estimator Ξ̃t (red line) and the weighted sample covariance
matrix Ξ̂t (green line).
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